A REDUNDANT VERSION OF THE RADO-HORN THEOREM

PETER G. CASAZZA, GITTA KUTYNIOK, AND DARRIN SPEEGLE

Abstract

The Rado-Horn Theorem gives a characterization of those sets of vectors which can be written as the union of a fixed number of linearly independent sets. In this paper we study the redundant case. We show that then the span of the vectors can be written as the direct sum of a subspace which directly fails the Rado-Horn criteria and a subspace for which the Rado-Horn criteria hold. As a corollary, we characterize those sets of vectors which, after the deletion of a fixed number of vectors, can be written as the finite union of linearly independent sets.

1. Introduction

The Rado-Horn Theorem [1, 2] gives a characterization of vectors which can be written as the finite union of M linearly independent sets.

Theorem 1 (Rado-Horn). Let I be a countable index set, $\left\{f_{i}: i \in I\right\}$ be a collection of vectors in a vector space, and $M \in \mathbb{N}$. Then the following conditions are equivalent.
(i) There exists a partition $\left\{I_{j}: j=1, \ldots, M\right\}$ such that for each $1 \leq j \leq M$, $\left\{f_{i}: i \in I_{j}\right\}$ is linearly independent.
(ii) For all finite $J \subset I$,

$$
\begin{equation*}
\frac{|J|}{\operatorname{dim} \operatorname{span}\left(\left\{f_{i}: i \in J\right\}\right)} \leq M \tag{1}
\end{equation*}
$$

The terminology "Rado-Horn Theorem" was introduced, to our knowledge, in the paper [3]. This theorem has had at least two interesting applications in analysis; namely, a characterization of Sidon sets in $\Pi_{k=1}^{\infty} \mathbb{Z}_{p}[4,5]$ and progress on the Feichtinger conjecture in [6]. There have also been at least three proofs, all in a similar spirit, of the Rado-Horn Theorem published [7, 2, 1]. Pisier, when discussing a characterization of Sidon sets in $\Pi_{k=1}^{\infty} \mathbb{Z}_{p}$ states "...d'un lemme d'algébre dû à Rado-Horn dont la démonstration est relativement délicate. [5, p. 704]"

In this paper, we prove a generalization of the Rado-Horn Theorem to the redundant case; that is, we consider the case that, after fixing $M \in \mathbb{N}$, the collection of vectors $\left\{f_{i}: i \in I\right\}$ cannot be partitioned into M linearly independent sets. It is not hard to see (see Corollary 4) that the partition that maximizes the sum of the dimensions

Date: 11th January 2006.
2000 Mathematics Subject Classification. Primary 15A03. Secondary 05A17.
Key words and phrases. Partition into linearly independent sets, Rado-Horn Theorem, Redundant system.

The first author was supported by NSF grant DMS 0405376. The second author was supported by DFG research fellowship KU 1446/5. The third author was supported by NSF grant DMS 0354957.
of the spans of the vectors is a partition into linearly independent sets in the case that the hypotheses of the Rado-Horn Theorem are satisfied. Our idea is to study the partition maximizing this sum in the case that the hypotheses of Rado-Horn are not satisfied. In particular, for this case, there must be some set $J \subset I$ such that (1) fails. We prove in Theorem 11 that then there is a partition of the vectors $\left\{f_{i}: i \in I\right\}$ that, in some sense, "tries" to be linearly independent. In particular, after partitioning, it becomes much easier to see which vectors are the obstacles to partitioning the set of vectors into linearly independent sets. Our proof is unfortunately no less delicate than the original proofs of the Rado-Horn Theorem, despite the addition of the idea of maximizing the sums of the dimensions of the partition at the beginning. However, we do obtain as a corollary to our main theorem the following formally stronger result than the Rado-Horn Theorem.

Theorem 2. Let I be a countable index set, $\left\{f_{i}: i \in I\right\}$ be a collection of vectors in a vector space, and $K, M \in \mathbb{N}$. Then the following conditions are equivalent.
(i) There exists a subset $H \subset I$ with $|H|=K$ such that $\left\{f_{i}: i \in I \backslash H\right\}$ can be written as the union of M linearly independent sets.
(ii) For every finite $J \subset I$,

$$
\begin{equation*}
\frac{|J|-K}{\operatorname{dim} \operatorname{span}\left(\left\{f_{i}: i \in J\right\}\right)} \leq M \tag{2}
\end{equation*}
$$

This paper is organized as follows. In Section 2 we discuss our main idea of proof, state some preliminary results, and introduce the notion of a chain which will be employed heavily throughout. Section 3 contains two redundant versions of the RadoHorn Theorem for a finite collection of vectors (Theorem 11 and Theorem 12). The proof of Theorem 2, which is the redundant version for an arbitrary countable collection of vectors, is then given in Section 4.

2. Preliminary results

We begin by fixing notation. All vectors will be assumed to be in an arbitrary vector space. Given a collection $\left\{f_{i}: i \in I\right\}$, and a subset $J \subset I$, we define $\mathbb{F}_{J}=\left\{f_{i}: i \in J\right\}$.
2.1. Partitions that maximize the sum of dimensions. The most difficult part of the proof of Theorem 1 is the finite case. So, our main concern is understanding and extending Theorem 1 in the finite case. To this end, our main idea is to partition I into $\left\{I_{j}: j=1, \ldots, M\right\}$ that maximizes

$$
\begin{equation*}
\sum_{j=1}^{M} \operatorname{dim} \operatorname{span}\left(\mathbb{F}_{I_{j}}\right) . \tag{3}
\end{equation*}
$$

Using Theorem 1 it is an easy matter to show that, if it is possible to partition the set \mathbb{F}_{I} into M linearly independent sets, then the partition maximizing (3) does it.
Proposition 3. Suppose $\left\{f_{i}: i \in I\right\}$ is a finite collection of vectors contained in a vector space, and I is partitioned into sets $\left\{I_{j}: j=1, \ldots, M\right\}$. Then the following conditions are equivalent.
(i) For every $j \in\{1, \ldots, M\}, \mathbb{F}_{I_{j}}$ is linearly independent.
(ii) $\sum_{j=1}^{M} \operatorname{dim} \operatorname{span}\left(\mathbb{F}_{I_{j}}\right)=|I|$.

Proof. (i) \Rightarrow (ii). Clearly, $\sum_{j=1}^{M} \operatorname{dim} \operatorname{span}\left(\mathbb{F}_{I_{j}}\right)=\sum_{j=1}^{M}\left|I_{j}\right|=|I|$. (ii) \Rightarrow (i). Note that

$$
|I|=\sum_{j=1}^{M} \operatorname{dim} \operatorname{span}\left(\mathbb{F}_{I_{j}}\right) \leq \sum_{j=1}^{M}\left|I_{j}\right|=|I| .
$$

Therefore, dim span $\left(\mathbb{F}_{I_{j}}\right)=\left|I_{j}\right|$ for each $1 \leq j \leq M$ and $\mathbb{F}_{I_{j}}$ is linearly independent.
Corollary 4. Given a finite collection of vectors \mathbb{F}_{I} satisfying (1), if we partition I into $\left\{I_{j}: j=1, \ldots, M\right\}$ such that (3) is maximized, then $\mathbb{F}_{I_{j}}$ is linearly independent for each $1 \leq j \leq M$.

Proof. By applying Theorem 1, we obtain a partition $\left\{D_{j}: j=1, \ldots, M\right\}$ of I such that each $\mathbb{F}_{D_{j}}$ is linearly independent. So,

$$
|I|=\sum_{j=1}^{M} \operatorname{dim} \operatorname{span}\left(\mathbb{F}_{D_{j}}\right) \leq \sum_{j=1}^{M} \operatorname{dim} \operatorname{span}\left(\mathbb{F}_{I_{j}}\right) \leq|I|
$$

Therefore, $\mathbb{F}_{I_{j}}$ is linearly independent for each $1 \leq j \leq M$ by Proposition 3.
The following easy example gives some idea as to the difficulties involved in partitioning vectors into linearly independent sets.

Example 5. Let $f_{1}=(1,0), f_{2}=(0,1), f_{3}=(1,1)$, and $f_{4}=(1,1)$. Then, if one starts with the wrong linearly independent set, $\mathbb{F}_{1}=\left\{f_{1}, f_{2}\right\}$, then one needs three sets to get each set linearly independent, while the alternative partition $\mathbb{F}_{1}=\left\{f_{1}, f_{3}\right\}$, $\mathbb{F}_{2}=\left\{f_{2}, f_{4}\right\}$ uses only two.

The next lemma will be needed in the proof of Theorem 11.
Lemma 6. Let $\left\{f_{i}: i \in I\right\}$ be a finite collection of vectors in a vector space. Let $M \in \mathbb{N}$ and $\left\{I_{j}: j=1, \ldots, M\right\}$ be a partition of I that maximizes $\sum_{j=1}^{M} \operatorname{dim} \operatorname{span}\left(\mathbb{F}_{I_{j}}\right)$ over all partitions of I, and let $p \in\{1, \ldots, M\}$. If $f_{k} \in I_{p}$ and $f_{k}=\sum_{l \in I_{p}, l \neq k} \alpha_{l} f_{l}$, then $f_{k} \in \operatorname{span}\left(\mathbb{F}_{I_{j}}\right)$ for all $1 \leq j \leq M$.

Proof. Assuming the hypothesis of the lemma, if $f_{k}=\sum_{l \in I_{p}, l \neq k} \alpha_{l} f_{l}$, then removing f_{k} from I_{p} keeps dim span $\left(\mathbb{F}_{I_{p}}\right)$ constant. Since we know that $\left\{I_{j}: j=1, \ldots, M\right\}$ maximizes the sum of the dimensions of the spans, moving f_{k} into another $I_{j}, j \neq p$ cannot increase dim span $\left(\mathbb{F}_{I_{j}}\right)$, and the result follows.
2.2. Notion of a chain. As part of the proof of our main theorem, we will be modifying our partition that maximizes (3) by moving linearly dependent vectors from one set to another. The following definition will be used to help us keep track of which vectors are being moved.

Definition 7. Let $\mathbb{F}_{I}=\left\{f_{i}: i \in I\right\}$ be a collection of vectors in a vector space. Let $\left\{I_{j}\right.$: $j=1, \ldots, M\}$ be a partition of I and let L be a subset of I_{1}. We define a chain of length n starting in L and ending at $a_{n} \in I$ to be a finite sequence $\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right\}$, where $a_{i} \in I$ and $b_{i} \in\{1, \ldots, M\}$, such that

- $a_{1} \in L$,
- $b_{1}=1$,
- for $2 \leq i \leq n, a_{i} \in I_{b_{i}}$ and $f_{a_{i}}=\alpha f_{a_{i-1}}+\sum_{j \in I_{b_{i}}, j \neq a_{i}} \alpha_{j} f_{j}$ for some $\alpha \neq 0$, and
- $a_{i} \neq a_{k}$ for $i \neq k$.

A chain of length n starting in L and ending at $a_{n} \in I$ is a chain of minimal length starting in L and ending at a_{n} if every chain starting in L and ending at a_{n} has length greater than or equal to n.

Lemma 8. Let $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ be a chain of minimal length starting in L and ending at a_{n}. Then, for each $1 \leq i \leq n,\left(a_{1}, b_{1}\right), \ldots,\left(a_{i}, b_{i}\right)$ is a chain of minimal length starting in L and ending at a_{i}.
Proof. By induction it suffices to show that $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n-1}, b_{n-1}\right)$ is a chain of minimal length. Suppose, for the sake of contradiction, that there did exist a chain $\left(u_{1}, v_{1}\right), \ldots,\left(u_{k}, v_{k}\right)$ such that $u_{k}=a_{n-1}$ and $k<n-1$. Since $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ is a chain,

$$
f_{a_{n}}=\alpha f_{a_{n-1}}+\sum_{j \in I_{b_{n}}, j \neq a_{n}} \alpha_{j} f_{j}
$$

for some $\alpha \neq 0$. Therefore, either $\left(u_{1}, v_{1}\right), \ldots,\left(u_{k}, v_{k}\right),\left(a_{n}, b_{n}\right)$ is a chain or $a_{n}=u_{i}$ for some $i \leq k$, either of which contradicts the minimality of n.

3. Redundant versions of the Rado-Horn Theorem in the finite case

In this section, we will prove a generalization of the finite version of the Rado-Horn Theorem, which is where the main difficulty in proving the Rado-Horn Theorem lies. In the papers [1, 2], the extensions to countable sets are given by a version of Tychonoff's Theorem. A similar extension of a corollary to our main theorem will also be given for the countable case. As mentioned in the introduction, the key to our development is understanding the partition of the indexing set that maximizes the sums of the dimensions in the following technical lemma.
Lemma 9. Let $\left\{f_{i}: i \in I\right\}$ be a countable collection of vectors, and $M \in \mathbb{N}$. There exists a partition I_{1}, \ldots, I_{M} of I maximizing $\sum_{j=1}^{M} \operatorname{dim} \operatorname{span}\left(\mathbb{F}_{I_{j}}\right)$ such that $\mathbb{F}_{I_{2}}, \ldots, \mathbb{F}_{I_{m}}$ are linearly independent. Moreover, let $L=\left\{i \in I_{1}: f_{i}=\sum_{j \in I_{1}, j \neq i} \alpha_{j} f_{j}\right\}, L_{0}=\{i \in$ I : there is a chain starting in L and ending at $i\}$, and $L_{j}=L_{0} \cap I_{j}$ for $1 \leq j \leq M$. If $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ is a chain of minimal length starting in L and ending at a_{n}, then $f_{a_{n}} \in \operatorname{span}\left(\mathbb{F}_{L_{m}}\right)$ for all $1 \leq m \leq M$.
Proof. The first part of the lemma follows immediately from Lemma 6. We show that, if $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ is a chain of minimal length starting in L and ending at a_{n}, then $f_{a_{n}} \in \operatorname{span}\left(\mathbb{F}_{L_{m}}\right)$ for each $1 \leq m \leq M$. For $n=1$, fix $m \in\{1, \ldots, M\}$, and observe
that $a_{1} \in L$. Hence, by Lemma 6 , we can write $f_{a_{1}}=\sum_{l \in I_{m}} \alpha_{l} f_{l}$. For each l such that $\alpha_{l} \neq 0,\left(a_{1}, 1\right),(l, m)$ is a chain ending at l. Therefore, $f_{a_{1}} \in \operatorname{span}\left(\mathbb{F}_{L_{m}}\right)$, as desired. Since $\mathbb{F}_{I_{2}}, \ldots, \mathbb{F}_{I_{M}}$ are linearly independent, $L=\left\{i \in I_{1}: f_{i}=\sum_{j \in I_{1}, j \neq i} \alpha_{j} f_{j}\right\}$, and $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ is a chain of minimal length, it follows that for each $1 \leq i<n$, $b_{i} \neq b_{i+1}$. Therefore, proceeding by induction, we can define

$$
U_{k}^{1}=I_{k}, \quad 1 \leq k \leq M
$$

and for $2 \leq i \leq n$,

$$
\begin{aligned}
U_{k}^{i} & =U_{k}^{i-1} \text { for } k \neq b_{i-1}, k \neq b_{i}, \\
U_{b_{i}}^{i} & =U_{b_{i}}^{i-1} \cup\left\{a_{i-1}\right\}, \\
U_{b_{i-1}}^{i} & =U_{b_{i-1}}^{i-1} \backslash\left\{a_{i-1}\right\} .
\end{aligned}
$$

Claim 10. For each $1 \leq i \leq n, f_{a_{i}}$ can be written as the sum

$$
\begin{equation*}
f_{a_{i}}=\sum_{j \in I_{b_{i}}, j \notin\left\{a_{p}: 1 \leq p \leq n\right\}} \alpha_{j} f_{j}+\sum_{j \in U_{b_{i}}^{i} \cap\left\{a_{p}: 1 \leq p<i\right\}} \alpha_{j} f_{j} . \tag{4}
\end{equation*}
$$

Proof of claim. For the case $i=1$, note that $a_{1} \in L$ implies that $f_{a_{1}}=\sum_{j \in L, j \neq a_{1}} \alpha_{j} f_{j}$ for some choice of α_{j}. By Lemma 8 none of these $j \in L$ can be in $\left\{a_{p}: 1 \leq p \leq n\right\}$ since this would not be a chain of minimal length. Recalling that $b_{i}=1$, the claim is proven for $i=1$. Proceeding by induction, let $i \in\{1, \ldots, n\}$ and we assume (4) is true for $1 \leq k<i$. We will show that it is also true for i. Note that

$$
\begin{align*}
f_{a_{i}} & =\alpha f_{a_{i-1}}+\sum_{j \in I_{b_{i}, j \neq a_{i}}} \alpha_{j} f_{j} \tag{5}\\
& =\alpha f_{a_{i-1}}+\sum_{j \in I_{b_{i}} \cap U_{b_{i}}^{i}, j \neq a_{i}} \alpha_{j} f_{j}+\sum_{j \in I_{b_{i}} \backslash \sum_{b_{i}}^{i}} \alpha_{j} f_{j} \\
& =\alpha f_{a_{i-1}}+\sum_{j \in I_{b_{i}} \cap \cup b_{b_{i}}^{i}, j \neq a_{i}} \alpha_{j} f_{j}+\sum_{j \in I_{b_{i}} \cap\left\{a_{p}: 1 \leq p<i-1\right\}} \alpha_{j} f_{j}, \tag{6}
\end{align*}
$$

where we have used in the last two lines that $I_{b_{i}} \cap\left\{a_{p}: 1 \leq p<i-1\right\}=I_{b_{i}} \backslash U_{b_{i}}^{i}$. Now, suppose for the sake of contradiction that there is a $j \in I_{b_{i}} \cap U_{b_{i}}^{i}$ such that $\alpha_{j} \neq 0$ and $j=a_{p}$ for some $p>i$. Then, $\left(a_{1}, b_{1}\right), \ldots,\left(a_{i-1}, b_{i-1}\right),\left(a_{p}, b_{i}\right)$ is a chain, which contradicts the minimality of the chain $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$. So, using the induction hypothesis on the last term in (6) and combining terms, one obtains

$$
f_{a_{i}}=\alpha f_{a_{i-1}}+\sum_{j \in I_{b_{i}}, j \notin\left\{a_{p}: 1 \leq p \leq n\right\}} \alpha_{j} f_{j}+\sum_{j \in U_{b_{i}}^{i} \cap\left\{a_{p}: 1 \leq p<i\right\}} \alpha_{j} f_{j} .
$$

Continuing the proof of Lemma 9, by Claim 10 and the fact that $I_{b_{i}} \backslash\left\{a_{p}: 1 \leq\right.$ $p \leq n\} \subset U_{b_{i}}^{k}$ for all $1 \leq k \leq n$, we have that $f_{a_{i}} \in \operatorname{span}\left(\mathbb{F}_{U_{b_{i}} i} \backslash\left\{a_{i}\right\}\right)$. Therefore,
$\operatorname{dim} \operatorname{span}\left(\mathbb{F}_{U_{b_{i}}^{i}}\right)=\operatorname{dim} \operatorname{span}\left(\mathbb{F}_{U_{b_{i}}^{i+1}}\right)$. In particular,

$$
\begin{equation*}
\sum_{k=1}^{M} \operatorname{dim} \operatorname{span}\left(\mathbb{F}_{U_{k}^{i}}\right)=\sum_{k=1}^{M} \operatorname{dim} \operatorname{span}\left(\mathbb{F}_{I_{k}}\right) \tag{7}
\end{equation*}
$$

is a maximum for each i. We turn now to finishing the proof of the lemma; namely, we show that $f_{a_{n}} \in \operatorname{span}\left(\mathbb{F}_{L_{m}}\right)$ for each $1 \leq m \leq M$. By (7), Claim 10, and Lemma 6, $f_{a_{n}} \in \operatorname{span}\left(\mathbb{F}_{U_{m}^{n}}\right)$ for each $1 \leq m \leq M$. Therefore, for $m \neq b_{n}$, there exist α_{j}^{0} such that

$$
\begin{align*}
f_{a_{n}} & =\sum_{j \in U_{m}^{n}} \alpha_{j}^{0} f_{j}=\sum_{j \in U_{m}^{n} \cap I_{m}} \alpha_{j}^{0} f_{j}+\sum_{j \in U_{m}^{n} \backslash I_{m}} \alpha_{j}^{0} f_{j} \\
& =\sum_{j \in U_{m}^{n} \cap I_{m}} \alpha_{j}^{0} f_{j}+\sum_{j \in\left\{a_{p}: b_{p+1}=m, 1 \leq p<n-1\right\}} \alpha_{j}^{0} f_{j} . \tag{8}
\end{align*}
$$

By definition of a chain, for each a_{p} such that $b_{p+1}=m$ and $1 \leq p<n-1$,

$$
\begin{equation*}
f_{a_{p}}=\alpha^{p} f_{a_{p+1}}+\sum_{j \in I_{m}, j \neq a_{p+1}} \alpha_{j}^{p} f_{j}, \tag{9}
\end{equation*}
$$

for some choice of α_{j}^{p} and some $\alpha^{p} \neq 0$. Fix j_{0} such that $\alpha_{j_{0}}^{0} \neq 0$ in (8). We show that $j_{0} \in L_{m}$, which finishes the proof of the lemma. Clearly, if $j_{0} \in\left\{a_{1}, \ldots, a_{n}\right\}$, then we are done, so we assume that $j_{0} \notin\left\{a_{1}, \ldots, a_{n}\right\}$.

Case 1: There is some $1 \leq p<n-1$ such that $b_{p+1}=m$ and $\alpha_{j_{0}}^{p} \neq 0$. Then, one can solve (9) for $f_{j_{0}}$ to obtain

$$
f_{j_{0}}=\beta f_{a_{p}}+\sum_{j \in I_{m}, j \neq j_{0}, j \neq a_{p}} \beta_{j} f_{j}
$$

for some $\beta \neq 0$. Hence, $\left(a_{1}, b_{1}\right), \ldots,\left(a_{p}, b_{p}\right),\left(j_{0}, m\right)$ is a chain and $j_{0} \in L_{m}$. Case 2: For each $1 \leq p<n-1$ such that $b_{p+1}=m$, we have $\alpha_{j_{0}}^{p}=0$. We have

$$
\begin{aligned}
f_{a_{n}} & =\sum_{j \in U_{m}^{n} \cap I_{m}} \alpha_{j}^{0} f_{j}+\sum_{j \in\left\{a_{p}: b_{p+1}=m, 1 \leq p<n-1\right\}} \alpha_{j}^{0} f_{j} \\
& =\sum_{j \in U_{m}^{n} \cap I_{m}} \alpha_{j}^{0} f_{j}+\sum_{p \in\left\{p: b_{p+1}=m, 1 \leq p<n-1\right\}} \alpha_{a_{p}}^{0} f_{a_{p}} \\
& =\sum_{j \in U_{m}^{n} \cap I_{m}} \alpha_{j}^{0} f_{j}+\sum_{p \in\left\{p: b_{p+1}=m, 1 \leq p<n-1\right\}}^{0} \alpha_{a_{p}}^{0}\left(\alpha^{p} f_{a_{p+1}}+\sum_{j \in I_{m}, j \neq a_{p+1}} \alpha_{j}^{p} f_{j}\right) \\
& =\alpha_{j_{0}}^{0} f_{j_{0}}+\sum_{j \in I_{m}, j \neq j_{0}} \tilde{\alpha}_{j} f_{j},
\end{aligned}
$$

where the first equality is (8), the second equality is a re-indexing, the third equality follows from (9), and the last equality holds for some choice of $\tilde{\alpha}_{j}$ by combining sums, since $\alpha_{j_{0}}^{p}=0$ for all $1 \leq p<n-1$ such that $b_{p+1}=m$, and $j_{0} \notin\left\{a_{1}, \ldots, a_{n}\right\}$. Therefore, $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right),\left(j_{0}, m\right)$ is a chain and $j_{0} \in L_{m}$.
Theorem 11. Let $\left\{f_{i}: i \in I\right\}$ be a finite collection of vectors in a vector space X and $M \in \mathbb{N}$. Then the following conditions are equivalent.
(i) There exists a partition $\left\{I_{j}: j=1, \ldots, M\right\}$ of I such that for each $1 \leq j \leq M$ the set $\mathbb{F}_{I_{j}}$ is linearly independent.
(ii) For all $J \subset I$,

$$
\begin{equation*}
\frac{|J|}{\operatorname{dim} \operatorname{span}\left(\mathbb{F}_{J}\right)} \leq M \tag{10}
\end{equation*}
$$

Moreover, in the case that either of the conditions above fails, there exists a partition $\left\{I_{j}: j=1, \ldots, M\right\}$ of I and a subspace S of X such that the following three conditions hold.
(a) For all $1 \leq j \leq M, S=\operatorname{span}\left\{f_{i}: i \in I_{j}\right.$ and $\left.f_{i} \in S\right\}$.
(b) For $J=\left\{i \in I: f_{i} \in S\right\}$, $\frac{|J|}{\operatorname{dim} \operatorname{span}\left(\mathbb{F}_{J}\right)}>M$.
(c) For each $1 \leq j \leq M, \sum_{i \in I_{j}, f_{i} \notin S} \alpha_{i} f_{i} \in S$ implies $\alpha_{i}=0$ for all i. In particular, for each $1 \leq j \leq M,\left\{f_{i}: i \in I_{j}, f_{i} \notin S\right\}$ is linearly independent.

Proof. We include a proof of the implication (i) \Rightarrow (ii) for completeness. Let $\left\{I_{j}: 1 \leq\right.$ $j \leq M\}$ be a partition of I such that $\mathbb{F}_{I_{j}}$ is linearly independent for $1 \leq j \leq M$. Let $J \subset I$ and consider $J_{j}=I \cap I_{j}, 1 \leq j \leq M$. Then,

$$
|J|=\sum_{j=1}^{M}\left|J_{j}\right|=\sum_{j=1}^{M} \operatorname{dim} \operatorname{span}\left(\mathbb{F}_{J_{j}}\right) \leq M \operatorname{dim} \operatorname{span}\left(\mathbb{F}_{J}\right),
$$

as desired. We prove (ii) \Rightarrow (i) and the moreover part together. Let $\left\{I_{j}: j=1, \ldots, M\right\}$ be a partition of I guaranteed to exist by Lemma 9 . Suppose that this doesn't partition \mathbb{F}_{I} into linearly independent sets, i.e. $\mathbb{F}_{I_{1}}$ is not linearly independent. As in Lemma 9 , let $L=\left\{i \in I_{1}: f_{i}=\sum_{j \in I_{1}, j \neq i} \alpha_{j} f_{j}\right\}$ be the index set of the "linearly dependent vectors" in $I_{1}, L_{0}=\{i \in I$: there is a chain starting in L ending at $i\}$, and $L_{j}=$ $L_{0} \cap I_{j}, 1 \leq j \leq M$.

Let $S=\operatorname{span}\left(\mathbb{F}_{L_{0}}\right)$. By Lemma $9, S=\operatorname{span}\left(\mathbb{F}_{L_{j}}\right)$ for all $1 \leq j \leq M$. Moreover, for $1 \leq j \leq M, i \in L_{j}$ implies that $i \in I_{j}$ and $f_{i} \in S$. Therefore,

$$
S \subset \operatorname{span}\left\{f_{i}: i \in L_{j}\right\} \subset \operatorname{span}\left\{f_{i}: i \in I_{j}, f_{i} \in S\right\}=S,
$$

and (a) is proven. To see (b), let $J=\left\{i \in I: f_{i} \in S\right\}$. By construction, $L \subset J$. Let $d=\operatorname{dim}(S)$ and see that, by $(\mathrm{a}), \operatorname{dim} \operatorname{span}\left(\mathbb{F}_{J}\right)=d$. Moreover,

$$
|J|=\left|L_{1}\right|+\cdots+\left|L_{M}\right|=\left|L_{1}\right|+(M-1) d>d M
$$

since L_{1} is linearly dependent. Therefore, (b) is satisfied. Finally, we show (c). Let $P_{j}=\left\{i \in I_{j}: f_{i} \notin S\right\}, Q_{j}=I_{j} \backslash P_{j}$. Suppose $g=\sum_{i \in P_{j}} \alpha_{i} f_{i} \in S$. By (a), g can also be written as the linear combination $g=\sum_{i \in Q_{j}} \alpha_{i} f_{i}$, which implies that either $\alpha_{i}=0$ for all $i \in P_{j}$ or there exists $k \in P_{j}$ such that $f_{k}=\sum_{i \in I_{j}, i \neq k} \alpha_{i} f_{i}$. Therefore, by our assumption that all linearly dependent vectors are in I_{1} and by the definition of L, it follows that $k \in L$ and $f_{k} \in S$. This cannot be, so $\alpha_{i}=0$ for all $i \in P_{j}$.

In the following result, we prove a more direct generalization of the Rado-Horn Theorem in the finite case. One main ingredient for the proof is Theorem 11.

Theorem 12. Let I be a finite index set, $\left\{f_{i}: i \in I\right\}$ be a collection of vectors in a vector space, and $K, M \in \mathbb{N}$. Then the following conditions are equivalent.
(i) There exists a subset $H \subset I$ with $|H|=K$ such that $\left\{f_{i}: i \in I \backslash H\right\}$ can be written as the union of M linearly independent sets
(ii) For every $J \subset I$,

$$
\begin{equation*}
\frac{|J|-K}{\operatorname{dim} \operatorname{span}\left(\left\{f_{i}: i \in J\right\}\right)} \leq M \tag{11}
\end{equation*}
$$

Proof. For the implication (i) \Rightarrow (ii), if $J \subset I$, then

$$
\frac{|J|-K}{\operatorname{dim} \operatorname{span}\left(\mathbb{F}_{J}\right)} \leq \frac{|J \cap(I \backslash H)|}{\operatorname{dim} \operatorname{span}\left(\mathbb{F}_{J \backslash H}\right)} \leq M,
$$

by Theorem 1. For the reverse direction, let S and the partition $\left\{I_{j}: j=1, \ldots, M\right\}$ be as in Theorem 11. For each $1 \leq j \leq M$, let \tilde{I}_{j} be a minimal spanning set for $\mathbb{F}_{I_{j}}$. Let $H=I \backslash \cup_{j=1}^{M} \tilde{I}_{j}$. Clearly, $\left\{\tilde{I}_{j}: 1 \leq j \leq M\right\}$ is a partition of $I \backslash H=\cup_{j=1}^{M} \tilde{I}_{j}$ such that each $\mathbb{F}_{\tilde{I}_{j}}$ is linearly independent; it remains to show that $|H|=\sum_{j=1}^{M}\left|I_{j} \backslash \tilde{I}_{j}\right| \leq K$. Let $P_{j}=\left\{i \in I_{j}: f_{i} \in S\right\}$ and $Q_{j}=\tilde{I}_{j} \backslash P_{j}$. To this end, we first claim that

$$
\begin{equation*}
I_{j} \backslash \tilde{I}_{j} \subset P_{j} \quad \text { for each } 1 \leq j \leq M \tag{12}
\end{equation*}
$$

For this, fix $1 \leq j \leq M$ and let $i \in I_{j} \backslash \tilde{I}_{j}$. Assume that $i \notin P_{j}$. Then, $f_{i} \notin S$ and $f_{i} \notin \tilde{I}_{j}$. Since $\mathbb{F}_{\tilde{I}_{j}}$ is a spanning set, $f_{i} \in \operatorname{span}\left\{f_{k}: k \in \tilde{I}_{j}\right\} \subset \operatorname{span}\left\{f_{k}: k \in I_{j}, k \neq i\right\}$. Therefore, we can write $f_{i}=\sum_{k \in I_{j}, k \neq i} \alpha_{k} f_{k}$ for some choice of α_{k}. Grouping all of the terms not in S with f_{i} yields a contradiction to Theorem 11 (c). This proves (12). Secondly, we will show that $\mathbb{F}_{P_{j} \cap \tilde{I}_{j}}$ is a basis for S. Indeed, let $f \in S$. Since the span of $\mathbb{F}_{\tilde{I}_{j}}$ contains S, we have that $f=g+h$, where $g \in \operatorname{span}\left(\mathbb{F}_{P_{j} \cap \tilde{I}_{j}}\right)$ and $h \in \operatorname{span}\left(\mathbb{F}_{Q_{j}}\right)$. By Theorem 11 (c) and the fact that $f, g \in S, h=0$ and $f \in \operatorname{span}\left(\mathbb{F}_{P_{j} \cap \tilde{I}_{j}}\right)$. Employing (12), the fact that $\mathbb{F}_{P_{j} \cap \tilde{I}_{j}}$ is a basis for S, and (11) yields

$$
\begin{aligned}
\sum_{j=1}^{M}\left|I_{j} \backslash \tilde{I}_{j}\right| & =\sum_{j=1}^{M}\left|P_{j} \backslash \tilde{I}_{j}\right| \\
& =\sum_{j=1}^{M}\left|\left(P_{j} \backslash \tilde{I}_{j}\right) \cup\left(P_{j} \cap \tilde{I}_{j}\right)\right|-\sum_{j=1}^{M}\left|P_{j} \cap \tilde{I}_{j}\right| \\
& =\sum_{j=1}^{M}\left|P_{j}\right|-M \operatorname{dim} S \\
& =\left|\bigcup_{j=1}^{m} P_{j}\right|-M \operatorname{dim} \operatorname{span}\left(\mathbb{F}_{\cup P_{j}}\right) \leq K
\end{aligned}
$$

This proves the theorem.

4. Proof of Theorem 2

First, we will require the following technical lemma, which will be the main ingredient in the proof of Theorem 2.

Lemma 13. Let $\left\{f_{i}: i \in \mathbb{N}\right\}$ be a collection of vectors in a vector space and let $I_{N}=\{i \in \mathbb{N}: 1 \leq i \leq N\}$. If there exists $K \in \mathbb{N}$ such that

$$
\begin{equation*}
\frac{|J|-K}{\operatorname{dim} \operatorname{span}\left(\mathbb{F}_{J}\right)} \leq M \tag{13}
\end{equation*}
$$

for all finite $J \subset \mathbb{N}$, then there exists $H \subset \mathbb{N}$ such that $|H|=K$ and for all $N \geq 1$, $\mathbb{F}_{I_{N} \backslash H}$ can be written as the union of M linearly independent sets.
Proof. Choose the smallest K such that (13) holds. Then, there exists a finite $J \subset \mathbb{N}$,

$$
\begin{equation*}
\frac{|J|-(K-1)}{\operatorname{dim} \operatorname{span}\left(\mathbb{F}_{J}\right)}>M \tag{14}
\end{equation*}
$$

Let A be the largest element in J and fix $N \geq A$. By Theorem 12 there exists $H_{N} \subset I_{N}$ such that $\left|H_{N}\right| \leq K$ and $\mathbb{F}_{I_{N} \backslash H_{N}}$ can be written as the union of M linearly independent sets. By (14), $\left|H_{N}\right|=K$. We show that $H_{N} \subset I_{A}$. If not, then $\mathbb{F}_{I_{A} \backslash\left(H_{N} \cap I_{A}\right)}$ can be written as the union of M linearly independent sets, but $\left|H_{N} \cap I_{A}\right|<K$, which together with equation (14) would contradict Theorem 12. So, for every $N \geq A$, there exists $H_{N} \subset I_{A}$ such that $\mathbb{F}_{I_{N} \backslash H_{N}}$ can be written as the union of M linearly independent sets. Since there are only finitely many subsets of I_{A}, there exist $N_{1}<N_{2}<N_{3}<\cdots$ such that for all $i, j \in \mathbb{N}$ we have $H_{N_{i}}=H_{N_{j}}$. Write $H=H_{N_{1}}$. Then, for any N, there exist $N_{i}>N$ and $H=H_{N_{i}} \subset I_{A} \subset I_{N}$ such that $\mathbb{F}_{I_{N_{i}} \backslash H}$ can be written as the union of M linearly independent sets. Therefore, $\mathbb{F}_{I_{N} \backslash H}$ can be written as the union of M linearly independent sets.

We finish by proving Theorem 2. As in [1, 2], we could extend Theorem 12 to the countable setting using a selection theorem. Easier in our case is to apply the infinite version of the Rado-Horn Theorem directly.

Proof of Theorem 2. By Lemma 13 and the implication $(i) \Rightarrow$ (ii) from the Rado-Horn Theorem, there is a single set H such that $|H|=K$ and for every finite set $J \subset I \backslash H$,

$$
\frac{|J|}{\operatorname{dim} \operatorname{span}\left(\mathbb{F}_{J}\right)} \leq M
$$

Thus, the hypotheses of the infinite version of the Rado-Horn Theorem are satisfied for $I \backslash H$, and $\mathbb{F}_{I \backslash H}$ can be written as the union of M linearly independent sets.

References

[1] R. Rado, A combinatorial theorem on vector spaces, J. London Math. Soc. 37 (1962) 351-353.
[2] A. Horn, A characterization of unions of linearly independent sets, J. London Math. Soc. 30 (1955), 494-496.
[3] J. Bourgain, Λ_{p}-sets in analysis: results, problems and related aspects, Handbook of the geometry of Banach spaces, Vol. I, 195-232, North-Holland, Amsterdam, 2001.
[4] M-P. Malliavin-Brameret and P. Malliavin, Caractérisation arithmétique d'une classe d'ensembles de Helson, C. R. Acad. Sci. Paris Sér. A-B 264 (1967) A192-A193.
[5] G. Pisier, De nouvelles caractérisations des ensembles de Sidon, Mathematical analysis and applications, Part B, pp. 685-726, Adv. in Math. Suppl. Stud., 7b, Academic Press, New York-London, 1981.
[6] P. Casazza, O. Christensen, A. Lindner and R. Vershynin, Frames and the Feichtinger conjecture, Proc. Amer. Math. Soc. 133 (2005), no. 4, 1025-1033.
[7] O. Christensen and A. Lindner, Decomposition of Riesz frames and wavelets into a finite union of linearly independent sets, Lin. Alg. Appl. 355 (2002), 147-159.

Department of Mathematics, University of Missouri, Columbia, Missouri 65211, USA E-mail address: pete@math.missouri.edu

Mathematical Institute, Justus-Liebig-University Giessen, 35392 Giessen, Germany E-mail address: gitta.kutyniok@math.uni-giessen.de

Department of Mathematics and Computer Science. Saint Louis University, Saint Louis, MO 63103

E-mail address: speegled@slu.edu

