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Abstract. In this paper we study finitely generated wavelet systems with arbitrary
dilation sets. In 2002 Hernández, Labate, and Weiss gave a characterization of when
such a system forms a Parseval frame, assuming that a certain hypothesis known
as the local integrability condition (LIC) holds. We show that, under some mild
regularity assumption on the wavelets, the LIC is solely a density condition on the
dilation sets. Using this new interpretation of the LIC, we further discuss when the
characterization result holds.

1. Introduction

Frames have turned out to be an essential tool for many emerging applications, since
they are robust not only against noise but also against losses (see, for example, [1, 2]).
Parseval frames, i.e., systems {fi}i∈I in a separable Hilbert space H for which

∑

i∈I

|〈f, fi〉|2 = ‖f‖2 for all f ∈ H,

enjoy rapidly increasing attention, since these frames are exactly those systems which
satisfy the perfect reconstruction formula f =

∑

i∈I 〈f, fi〉 fi, even though the system
may be highly redundant.

One of the most useful types of systems are wavelet systems, and Parseval frame
properties of these systems have recently been the focus of a number of papers, e.g.,
[3, 4, 6, 14, 15, 16]. Most results are concerned with classical wavelet systems where
the dilation set has the form {aj : j ∈ Z}, where a > 1, but due to questions arising
from sampling theory and concerning perturbation of the dilation sets the necessity of
studying wavelet systems with arbitrary dilation sets has occurred.

In this paper we focus on finitely generated wavelet systems of the form

L
⋃

l=1

W(ψl, Sl × blZ) =

L
⋃

l=1

{ 1√
s
ψl(

x
s
− blk) : s ∈ Sl, k ∈ Z}, (1)

where S1, . . . , SL ⊆ R+ are finitely many sequences of arbitrary dilations, b1, . . . , bL >
0, and ψ1, . . . , ψL ∈ L2(R) are wavelets. Recall that a wavelet is a function ψ ∈
L2(R) satisfying the admissibility condition

∫

R
|ψ̂(ξ)|2/|ξ| dξ <∞, which is a necessary
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condition for a wavelet system to form a frame [5]. In [12] (compare also [8] for
a correction and some improvements in the situation of classical wavelet systems in
higher dimensions) Hernández, Labate, and Weiss gave a characterization of when a
system of the form (1) constitutes a Parseval frame for L2(R), assuming that this
system satisfies a certain hypothesis known as the local integrability condition, which
is defined as follows.

Definition 1.1. A system of the form (1) satisfies the local integrability condition

(LIC), if for all f ∈ L2(R) with f̂ ∈ L∞(R) and supp f̂ being compact in R∗ = R\{0},

I(f) =

L
∑

l=1

1

bl

∑

s∈Sl

∑

m∈Z

∫

supp f̂

|f̂(ξ + m
sbl

)|2|ψ̂l(sξ)|2 dξ <∞.

The purpose of this paper is to study this rather technical-appearing hypothesis.
We will show that, under some mild regularity assumption on the wavelets, the LIC is
solely a density condition on the dilation sets. More precisely, it will be proven that the
LIC is equivalent to the condition that the dilation sets possess a finite upper density.
This condition is very natural, since every wavelet frame of the form (1) must have
finite upper density.

In addition to this main result, the techniques we employ include some just recently
developed as well as some that are new to the study of wavelets. The notion of density
which we use was applied in [13] to derive necessary and sufficient conditions for the
existence of wavelet frames. Some variations of this density were employed in [10, 11,
17, 18] to study similar questions. The mild regularity condition on the wavelets will be
given in terms of membership of the wavelet in a particular Wiener amalgam space on
the group R∗. A different amalgam space (on the affine group) has been recently used
in the study of the Homogeneous Approximation Property (HAP) for wavelet systems
in [11].

This paper is organized as follows. In Section 2 we introduce the notion of upper and
lower density for subsets of R+ and state some basic properties. Our main results are
presented in Section 3. In Section 3.1 we give the definition of an amalgam space on
the group R∗. In Section 3.2 we derive an equivalent formulation of the LIC in terms of
density conditions (Theorem 3.3). This yields a characterization of finitely generated
wavelet Parseval frames with arbitrary dilations provided that the dilation sets possess
a finite upper density and the wavelets belong to an amalgam space (Theorem 3.7).
This result is stated in Section 3.3. Using the new interpretation of the LIC, in this
section we further discuss when the characterization result holds.

2. Density for sequences in R+

In this section we will derive a notion of density for sequences in R+ adapted to
the geometry of the multiplicative group R+ in the spirit of the definition of Beurling
density on Euclidean space and affine Beurling density on the affine group. Notice that
throughout, although S will always denote a sequence of points in R+ and not merely
a subset, for simplicity we will write S ⊆ R

+.
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For h > 0, we let Qh denote a fixed increasing, exhaustive family of neighborhoods
of the identity element 1 in R+. For simplicity of computation, we will take

Qh = [e−
h

2 , e
h

2 ).

For x ∈ R+, we let xQh denote the set Qh translated via multiplication by x. Let
µ = dx

x
denote the Haar measure on R+. Since µ is invariant under multiplication, we

have that

µ(xQh) = µ(Qh) =

∫ e
h
2

e−
h
2

dx

x
= h.

Then the upper and lower densities of a sequence in R+ are defined as follows.

Definition 2.1. Given S ⊆ R+, the upper (Beurling) density of S is defined by

D+(S) = lim sup
h→∞

sup
x∈R+

#(S ∩ xQh)

h
,

and the lower (Beurling) density of S is

D−(S) = lim inf
h→∞

inf
x∈R+

#(S ∩ xQh)

h
.

If D−(S) = D+(S), then S has uniform (Beurling) density, and we denote this density
by D(S).

Recall that the wavelet systems we are considering, of the form given in (1), possess
finitely many dilation sets. In order to equip such a system with a single density, we
will consider the disjoint union of the single dilation sets.

Remark 2.2. Let S1, . . . , SL ⊆ R+. We will use the notation S =
⋃L

l=1 Sl to denote the
disjoint union of these sequences. In particular, if each Sl is indexed as Sl = {skl}k∈N,
then S is the sequence S = {s11, . . . , s1L, s21, . . . , s2L, . . . }. We have the following
relation between the density of the single sequences and the density of their disjoint
union:

L
∑

l=1

D−(Sl) ≤ D−(S) ≤ D+(S) ≤
L
∑

l=1

D+(Sl).

These inequalities may be strict, e.g., consider S1 = {em : m ∈ Z, m ≥ 0} and
S2 = {em : m ∈ Z, m < 0}, where L = 2.

We obtain the following useful reinterpretation of finite upper density of a single
sequence.

Proposition 2.3. Let S ⊆ R+. Then the following conditions are equivalent.

(i) D+(S) <∞.
(ii) There exists an interval I ⊆ R+ with 0 < µ(I) < ∞ such that supx∈R+ #(S ∩

xI) <∞.
(iii) For every interval I ⊆ R+ with 0 < µ(I) < ∞, we have supx∈R+ #(S ∩ xI) <

∞.
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Proof. (i) ⇒ (ii) and (iii) ⇒ (ii) are trivial.
In the following we prove (ii) ⇒ (i), (iii). Suppose there exists an interval I ⊆ R+

with 0 < µ(I) <∞ and some constant N <∞ with #(S∩xI) < N for all x ∈ R+. Let
J be another interval in R+ with 0 < µ(J) < ∞. If there exists y ∈ R+ with yJ ⊆ I,
then #(S ∩ xJ) < N for all x ∈ R

+. On the other hand, if there exists y ∈ R
+ with

yI ⊆ J , then µ(J) = rµ(I) for some r ≥ 1, and J is covered by a union of at most
r + 1 sets of the form xI. Consequently,

sup
x∈R+

#(S ∩ xJ) ≤ (r + 1) sup
x∈R+

#(S ∩ xI) ≤ (r + 1)N.

Thus statement (iii) holds. Further,

D+(S) ≤ lim sup
r→∞

supx∈R+ #(S ∩ xQrµ(I))

rµ(I)
≤ lim sup

r→∞

(r + 1)N

rµ(I)
=

N

µ(I)
<∞,

so statement (i) holds as well. �

The following immediate consequence will be a useful tool for reducing statements
about density for disjoint unions of sequences in R+ to density of the single sequences.

Proposition 2.4. Let S1, . . . , SL ⊆ R+, and let S =
⋃L

l=1 Sl. Then the following
conditions are equivalent.

(i) We have D+(S) <∞.
(ii) For all 1 ≤ l ≤ L, we have D+(Sl) <∞.

3. Density and the LIC

In this section we will show that the LIC is equivalent to a density condition on
the sets of dilations provided that the Fourier transform of the generating wavelets are
contained in a particular amalgam space.

3.1. Amalgam Spaces. An amalgam space combines a local criterion for membership
with a global criterion. For our purposes, we will need only the following particular
amalgam space on the group R∗, where R∗ = R\{0}. The backbone of the definition of
the discrete-type norm of this amalgam space is the choice of a collection of subsets of
R∗. However, it can be shown that in fact the definition is not dependent on a particular
choice; the only requirement is that the characteristic functions of the subsets belonging
to this collection form a bounded uniform partition of unity (BUPU) in the terminology
of [7]. In our case, for each h > 0, we let Kh := −Qh∪Qh, and we will use the notation
Kh(x) = −xQh ∪ xQh for x ∈ R∗. It is easily checked that {K1(e

k) : k ∈ Z} provides
us with a tiling of R

∗; hence, {χK1(ek)}k∈Z forms a BUPU. Using this particular tiling
we can define the amalgam space WR∗(L∞, L2) on the group R∗ as follows.

Definition 3.1. A function f : R → C belongs to the amalgam space WR∗(L∞, L2) if

‖f‖WR∗(L∞,L2) =

(

∑

k∈Z

esssupx∈K1(ek)|f(x)|2
)

1

2

<∞.
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For an expository introduction to amalgam spaces with extensive references to the
original literature, we refer to [9].

The following lemma shows that the consideration of wavelets whose Fourier trans-
form is contained in this amalgam space is by no means restrictive, and is even natural.
Specifically, a mild decay condition on ψ̂ suffices to ensure that ψ̂ ∈WR∗(L∞, L2).

Lemma 3.2. Let ψ ∈ L1(R) ∩ L2(R). Suppose that there exist a, b, α, β > 0 such that

|ψ̂(ξ)| ≤ a|ξ|α as |ξ| → 0 and |ψ̂(ξ)| ≤ b|ξ|−β as |ξ| → ∞. Then ψ̂ ∈WR∗(L∞, L2).

Proof. Let 0 < ω ≤ Ω < ∞ be such that |ψ̂(ξ)| ≤ a|ξ|α for all |ξ| ≤ ω and |ψ̂(ξ)| ≤
b|ξ|−β for all |ξ| ≥ Ω. Since ψ ∈ L1(R), hence ψ̂ ∈ C(R), there exists M < ∞ such

that |ψ̂(ξ)| ≤M for all |ξ| ∈ [e−1ω, eΩ]. Then,

‖ψ̂‖2
WR∗(L∞,L2)

=
∑

k∈Z

sup
ξ∈K1(ek)

|ψ̂(ξ)|2

≤
∑

k∈Z,k≤lnω− 1

2

sup
ξ∈K1(ek)

|ψ̂(ξ)|2 +

⌊lnΩ+ 1

2
⌋

∑

k=⌈ln ω− 1

2
⌉

sup
ξ∈K1(ek)

|ψ̂(ξ)|2 +
∑

k∈Z,k≥lnΩ+ 1

2

sup
ξ∈K1(ek)

|ψ̂(ξ)|2

≤ a2

⌊ln ω− 1

2
⌋

∑

k=−∞
|ek+ 1

2 |2α + (lnΩ − lnω + 2)M2 + b2
∞
∑

k=⌈lnΩ+ 1

2
⌉

|ek− 1

2 |−2β < ∞. �

Let ψ ∈ L2(R) be a wavelet. If ψ ∈ L1(R), then ψ̂(0) = 0. Thus, if in addition
a wavelet ψ possesses a Fourier transform with polynomial decay towards zero and
infinity, then its Fourier transform is contained in WR∗(L∞, L2).

3.2. A Density Version of the LIC. Now we turn to the interpretation of the LIC
(see Definition 1.1) in terms of the density of the dilation sets. Our main result gives
an equivalent formulation of the LIC in terms of density conditions.

Theorem 3.3. Let S1, . . . , SL ⊆ R+, let S =
⋃L

l=1 Sl, and let b1 . . . , bL > 0 be given.
Then the following conditions are equivalent.

(i) We have D+(S) <∞.

(ii) For all ψ1, . . . , ψL ∈ L2(R) with ψ̂1, . . . , ψ̂L ∈WR∗(L∞, L2), the wavelet system
⋃L

l=1 W(ψl, Sl × blZ) satisfies the LIC.

We will break its proof into several parts to improve clarity. First we derive an easy
equivalent formulation of the LIC better suited to our purposes.

Lemma 3.4. Let S1, . . . , SL ⊆ R+, b1 . . . , bL > 0, and ψ1, . . . , ψL ∈ L2(R) be given.
Then the following conditions are equivalent.

(i) The system
⋃L

l=1 W(ψl, Sl × blZ) satisfies the LIC.
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(ii) For all l = 1, . . . , L and h > 0,

Il(h) =
1

bl

∑

s∈Sl

1

s

∑

m∈Z

∫

Kh(s)∩(Kh(s)−m

bl
)

|ψ̂l(ξ)|2 dξ <∞.

Proof. (i) ⇒ (ii). Let I(f) be defined as in Definition 1.1. Suppose that (i) holds, i.e.,

I(f) < ∞ for all f ∈ L2(R) such that f̂ ∈ L∞(R) and supp f̂ is compact in R∗. Then

choosing f ∈ L2(R) with f̂ = χKh
and observing that each of the terms Il, l = 1, . . . , L,

is positive, implies (ii).

(ii) ⇒ (i). For l = 1, . . . , L and h > 0, we first notice that

Il(h) =
1

bl

∑

s∈Sl

∑

m∈Z

∫

Kh

χKh
(ξ + m

sbl

) |ψ̂l(sξ)|2 dξ. (2)

Now let f ∈ L2(R) be such that f̂ ∈ L∞(R) and supp f̂ is compact in R∗. Then there

exists M <∞ and a compact set K ⊆ R∗ such that |f̂(ξ)| ≤MχK(ξ) for almost every
ξ ∈ R. Since (Kh)h>0 is an exhaustive sequence of compact sets in R∗, there exists
h > 0 such that K ⊆ Kh. By (ii) and (2), this yields

I(f) =
L
∑

l=1

1

bl

∑

s∈Sl

∑

m∈Z

∫

supp f̂

|f̂(ξ + m
sbl

)|2 |ψ̂l(sξ)|2 dξ

≤ M2

L
∑

l=1

1

bl

∑

s∈Sl

∑

m∈Z

∫

K

χK(ξ + m
sbl

) |ψ̂l(sξ)|2 dξ

≤ M2
L
∑

l=1

Il(h) < ∞.

Thus (i) is satisfied. �

The following lemma establishes a relation between density, the amalgam space
WR∗(L∞, L2), and a Littlewood–Paley–type inequality.

Lemma 3.5. Let S ⊆ R+ with D+(S) < ∞ be given, and let ψ ∈ L2(R) with ψ̂ ∈
WR∗(L∞, L2) be given. Then there exists B <∞ such that

∑

s∈S

|ψ̂(sξ)|2 ≤ B for a.e. ξ ∈ R.

Proof. For each k ∈ Z, set ck = esssupξ∈K1(ek)|ψ̂(ξ)|2. Then we have

|ψ̂(ξ)|2 ≤
∑

k∈Z

ckχK1(ek)(ξ) for a.e. ξ ∈ R (3)

and
∑

k∈Z

ck = ‖ψ̂‖2
WR∗(L∞,L2). (4)
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Since S ⊆ R+, equation (3) yields

esssupξ∈R∗

∑

s∈S

|ψ̂(sξ)|2 ≤ sup
ξ∈R∗

∑

s∈S

∑

k∈Z

ck χK1(ek)(sξ)

≤
∑

k∈Z

ck sup
ξ∈R∗

∑

s∈S

χK1(ξ−1ek)(s)

=
∑

k∈Z

ck sup
ξ∈R∗

∑

s∈S

χK1(ξ)(s)

=
∑

k∈Z

ck sup
ξ∈R+

#(S ∩ ξQ1).

Since ψ̂ ∈ WR∗(L∞, L2) and D+(S) < ∞, the last quantity is a finite constant by
equation (4) and Proposition 2.3. �

In the following lemma, by using a sequence in R+, we explicitly construct functions
whose Fourier transform is contained in WR∗(L∞, L2).

Lemma 3.6. Let (yn)n∈N ⊆ R+ be such that the sets ynQ1, n ∈ N, are mutually
disjoint.

(i) Suppose that yn → 0 as n→ ∞. Then the function ψ ∈ L2(R) defined by

ψ̂ =
∑

n∈N

1

n
χynQ1

satisfies ψ̂ ∈WR∗(L∞, L2).
(ii) Suppose that yn → ∞ as n→ ∞. Then the function ψ ∈ L2(R) defined by

ψ̂ =
∑

n∈N

1

n
√
yn

χynQ1

satisfies ψ̂ ∈WR∗(L∞, L2).

Proof. (i) Suppose that yn → 0 as n → ∞. It is easy to check that ψ̂ ∈ L2(R), hence
ψ ∈ L2(R). We next observe that for each k ∈ Z and x ∈ R+, we have ekQ1 ∩ xQ1 6= ∅
if and only if lnx− 1 ≤ k ≤ ln x+ 1. Therefore we obtain

∑

k∈Z

sup
ξ∈K1(ek)

|ψ̂(ξ)|2 =
∑

n∈N

1

n2

∑

k∈Z

sup
ξ∈ekQ1

χynQ1
(ξ)

=
∑

n∈N

1

n2
#{k ∈ Z : ekQ1 ∩ ynQ1 6= ∅}

≤ 3
∑

n∈N

1

n2
< ∞.

(ii) Now suppose that yn → ∞ as n → ∞. The slightly different definition of ψ

ensures that also in this case ψ̂ ∈ L2(R), hence ψ ∈ L2(R). Then ψ̂ ∈ WR∗(L∞, L2)
can be proven in a similar way as in part (i). �
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Now we are prepared to prove Theorem 3.3.

Proof of Theorem 3.3. (i) ⇒ (ii). We suppose that D+(S) < ∞, which by Proposi-
tion 2.4 implies that each D+(Sl) <∞, l = 1, . . . , L. For arbitrary ψ1, . . . , ψL ∈ L2(R)

with ψ̂1, . . . , ψ̂L ∈ WR∗(L∞, L2), we have to show that
⋃L

l=1 W(ψl, Sl × blZ) satisfies
the LIC. As observed in Lemma 3.4, it suffices to prove that

Il(h) =
1

bl

∑

s∈Sl

1

s

∑

m∈Z

∫

Kh(s)∩(Kh(s)−m

bl
)

|ψ̂l(ξ)|2 dξ <∞, (5)

for all l = 1, . . . , L and h > 0. For this, fix h > 0, ψ ∈ L2(R) with ψ̂ ∈ WR∗(L∞, L2),
and consider some l ∈ {1, . . . , L}. For the sake of brevity, we set I(h) = Il(h), S = Sl,
and b = bl. We decompose I(h) by

I(h) = I1(h) + I2(h),

where

I1(h) =
1

b

∑

s∈S

1

s

∫

Kh(s)

|ψ̂(ξ)|2 dξ

and

I2(h) =
1

b

∑

s∈S

1

s

∑

m∈Z\{0}

∫

Kh(s)∩(Kh(s)−m

b
)

|ψ̂(ξ)|2 dξ.

First, we study I1(h). By Lemma 3.5, there exists some B <∞ such that
∑

s∈S

|ψ̂(sξ)|2 ≤ B for a.e. ξ ∈ R.

Therefore,

I1(h) =
1

b

∑

s∈S

1

s

∫

Kh(s)

|ψ̂(ξ)|2 dξ =
1

b

∫

Kh

∑

s∈S

|ψ̂(sξ)|2 dξ ≤ 1

b
B|Kh| <∞. (6)

Secondly, we show that I2(h) is finite. Let s ∈ S be fixed. We observe that if
sQh ∩ (sQh − m

b
) 6= ∅ then

se−
h

2 ≤ se
h

2 − m
b

and se
h

2 ≥ se−
h

2 − m
b
.

This is equivalent to

−sb(eh

2 − e−
h

2 ) ≤ m ≤ sb(e
h

2 − e−
h

2 ).

Since Kh(s) = −sQh ∩ sQh, for each s ∈ S there exist at most 3(2sb(e
h

2 − e−
h

2 ) + 1)
integers m such that Kh(s)∩(Kh(s)− m

b
) 6= ∅. Recall that in this case we only consider

m ∈ Z\{0}. Therefore there exists ǫ > 0 such that Kh(s) ∩ (Kh(s) − m
b
) = ∅ for all

s ∈ S with s < ǫ and m ∈ Z\{0}. This shows that we only need to consider those
s ∈ S with s ≥ ǫ. Then there exists C <∞ such that

3(2sb(e
h

2 − e−
h

2 ) + 1) ≤ Cs(e
h

2 − e−
h

2 ) for all s ∈ S, s ≥ ǫ.
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Using these observations, we obtain

I2(h) ≤ 1

b

∑

s∈S

1

s
Cs(e

h

2 − e−
h

2 )

∫

Kh(s)

|ψ̂(ξ)|2 dξ

=
C

b
(e

h

2 − e−
h

2 )
∑

s∈S

∫

Kh(s)

|ψ̂(ξ)|2 dξ. (7)

It follows easily from D+(S) <∞ that there exists N <∞ such that

#{s ∈ S : x ∈ Kh(s)} ≤ N for all x ∈ R.

Continuing equation (7), we obtain

I2(h) ≤
C

b
(e

h

2 − e−
h

2 )
∑

s∈S

∫

Kh(s)

|ψ̂(ξ)|2 dξ ≤ C

b
(e

h

2 − e−
h

2 )N ‖ψ̂‖2
2 <∞. (8)

Combining the estimates (6) and (8) yields (5). Thus (ii) holds.

(ii) ⇒ (i). Suppose (ii) holds. Towards a contradiction assume that we have D+(S) =
∞. By Proposition 2.4, there exists l0 ∈ {1, . . . , L} with D+(Sl0) = ∞. Thus, by

Lemma 3.4, it suffices to show that there exists ψ ∈ L2(R) with ψ̂ ∈WR∗(L∞, L2) such
that for some h > 0,

Il0(h) =
1

bl0

∑

s∈Sl0

1

s

∑

m∈Z

∫

Kh(s)∩(Kh(s)− m

bl0

)

|ψ̂(ξ)|2 dξ = ∞. (9)

To simplify notation we set I(h) = Il0(h), S = Sl0 , and b = bl0 . Proposition 2.3 implies
the existence of sequences (yn)n∈N ⊆ R+ and (Sn)n∈N with Sn ⊆ S satisfying that
#Sn ≥ n and Sn ⊆ ynQ1.

If there exists y ∈ R+ and h > 0 with #(S ∩ yQh) = ∞, then choosing ψ ∈ L2(R)

by ψ̂ = χyQhKh
∈WR∗(L∞, L2) yields

I(h) =
1

b

∑

s∈S

1

s

∑

m∈Z

∫

Kh(s)∩(Kh(s)−m

b
)

|ψ̂(ξ)|2 dξ

≥ 1

b

∑

s∈S∩yQh

1

s

∫

Kh(s)

χyQhKh
(ξ) dξ

=
1

b

∑

s∈S∩yQh

1

s
s|Kh| = ∞.

Otherwise we remark that, by restricting (yn)n∈N to a subsequence if necessary, we
have either yn → 0 or yn → ∞ as n → ∞. Moreover, without loss of generality we
may assume that the sets ynQ1, n ∈ N, are mutually disjoint, by choosing again an
appropriate subsequence if necessary.

First assume that yn → 0 as n→ ∞. Then we define the function ψ ∈ L2(R) by

ψ̂ =
∑

n∈N

1

n
χynQ1

.
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Lemma 3.6(i) implies that ψ̂ ∈ WR∗(L∞, L2). We now choose h = 2. Then,

I(2) =
1

b

∑

s∈S

1

s

∑

m∈Z

∫

K2(s)∩(K2(s)−m

b
)

∑

n∈N

1

n2
χynQ1

(ξ) dξ

≥ 1

b

∑

n∈N

1

n2

∑

s∈Sn

1

s

∑

m∈Z

|sQ2 ∩ (sQ2 − m
b
) ∩ ynQ1|. (10)

Fix n ∈ N. Since Sn ⊆ ynQ1, it follows that for each s ∈ Sn,

ynQ1 = [yne
− 1

2 , yne
1

2 ) ⊆ [se−
1

2 e−
1

2 , se
1

2 e
1

2 ) = [se−1, se) = sQ2. (11)

This implies that yn

s
Q1 ⊆ Q2, and hence an easy computation shows that yn

s
∈ [e−

1

2 , e
1

2 ).
Thus

|Q2 ∩ yn

s
Q1| ≥ 1 − e−1 for all n ∈ N, s ∈ Sn. (12)

Therefore, employing (11) and (12), we can continue the computation in (10) to obtain

I(2) ≥ 1

b

∑

n∈N

1

n2

∑

s∈Sn

1

s

∑

m∈Z

|sQ2 ∩ (sQ2 − m
b
) ∩ ynQ1|

≥ 1

b

∑

n∈N

1

n2

∑

s∈Sn

1

s
|sQ2 ∩ ynQ1|

=
1

b

∑

n∈N

1

n2

∑

s∈Sn

|Q2 ∩ yn

s
Q1|

≥ 1 − e−1

b

∑

n∈N

1

n
= ∞.

This settles (9) for h = 2.
Secondly, assume that yn → ∞ as n→ ∞. In this case we define ψ ∈ L2(R) by

ψ̂ =
∑

n∈N

1

n
√
yn

χynQ1
.

Lemma 3.6(ii) implies that ψ̂ ∈ WR∗(L∞, L2). We observe that sQ2 ⊆ sQ4 − m
b

if and
only if

−sb(e−1 − e−2) ≤ m ≤ sb(e2 − e).
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Thus there exist at least sb(e2 − e + e−1 − e−2) = sbC ′ values of m for which this
containment is true. Choosing h = 4 and using (11) yields

I(4) ≥ 1

b

∑

n∈N

1

n2yn

∑

s∈Sn

1

s

∑

m∈Z

|sQ4 ∩ (sQ4 − m
b
) ∩ ynQ1|

≥ 1

b

∑

n∈N

1

n2yn

∑

s∈Sn

1

s
sbC ′|ynQ1|

= C ′|Q1|
∑

n∈N

1

n2yn

∑

s∈Sn

yn

≥ C ′|Q1|
∑

n∈N

1

n
= ∞.

This settles (9) for h = 4.
Hence (ii) is not satisfied, a contradiction. �

3.3. A Characterization of Wavelet Parseval Frames. The equivalent formula-
tion of the LIC in terms of density conditions yields the following characterization
result for finitely generated wavelet Parseval frames with arbitrary dilation sets.

Theorem 3.7. Let S1, . . . , SL ⊆ R+, and let S =
⋃L

l=1 Sl. Suppose that D+(S) < ∞.

Then for all ψ1, . . . , ψL ∈ L2(R) with ψ̂1, . . . , ψ̂L ∈ WR∗(L∞, L2) and b1, . . . , bL ∈ R
+,

the following conditions are equivalent.

(i)
⋃L

l=1 W(ψl, Sl × blZ) is a Parseval frame for L2(R).

(ii) For each α ∈ ⋃L

l=1

⋃

s∈Sl

1
bls

Z, where Pα = {(l, s) ∈ {1, . . . , L}×Sl : blsα ∈ Z},
we have

∑

(l,s)∈Pα

1

bl
ψ̂l(sξ)ψ̂l(s(ξ + α)) = δα,0 for a.e. ξ ∈ R.

Proof. The claim follows immediately from Theorem 3.3 and [12, Thm. 2.1]. �

At last, we show that the hypothesis of finite upper density is not at all restrictive.

Proposition 3.8. Let S1, . . . , SL ⊆ R+, and let S =
⋃L

l=1 Sl. Further, let b1, . . . , bL >
0 and ψ1, . . . , ψL ∈ L2(R) be given. Then Theorem 3.7(i) implies D+(S) <∞, and if,
in addition, ψ1, . . . , ψL ∈ L1(R), then Theorem 3.7(ii) implies D+(S) <∞.

Proof. First suppose that Theorem 3.7(i) holds, i.e., that
⋃L

l=1 W(ψl, Sl × blZ) is a
Parseval frame for L2(R). Then, in particular, for each l = 1, . . . , L the wavelet system
W(ψl, Sl × blZ) is a Bessel sequence, i.e., it possesses an upper frame bound. Now [10,
Thm. 1.1(a)] implies that D+(Sl×blZ) <∞ for all l = 1, . . . , L. A simple computation
shows that this implies D+(Sl) <∞ for all l = 1, . . . , L. The application of Proposition
2.4 then proves the first claim.
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Secondly, suppose that Theorem 3.7(ii) holds. Notice that P0 = {(l, s) ∈ {1, . . . , L}×
Sl}. Hence in the special case α = 0 we obtain

L
∑

l=1

1

bl

∑

s∈Sl

|ψ̂l(sξ)|2 = 1 for a.e. ξ ∈ R.

Towards a contradiction assume that there exists l0 ∈ {1, . . . , L} with D+(Sl0) = ∞.

There exist some ξ0 ∈ R and h0 > 0 such that |ψ̂l0(ξ)|2 ≥ δ > 0 for every ξ ∈ ξ0Qh0
.

Applying Proposition 2.3, for each n ∈ N, there exists some yn ∈ R with

#(Sl0 ∩ ynQh0
) ≥ n.

Hence,
∑

s∈Sl0

|ψ̂l0(s(ξ0y
−1
n ))|2 ≥

∑

s∈Sl0
∩ynQh0

|ψ̂l0(s(ξ0y
−1
n ))|2 ≥ δ n,

a contradiction. Thus D+(Sl) < ∞ for all l = 1, . . . , L. Proposition 2.4 then settles
the claim. �
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