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Abstract. This paper proves that every frame of windowed exponentials

satisfies a Strong Homogeneous Approximation Property with respect to its

canonical dual frame, and a Weak Homogeneous Approximation Property

with respect to an arbitrary dual frame. As a consequence, a simple proof

of the Nyquist density phenomenon satisfied by frames of windowed expo-

nentials with one or finitely many generators is obtained. The more delicate

cases of Schauder bases and exact systems of windowed exponentials are also

studied. New results on the relationship between density and frame bounds

for frames of windowed exponentials are obtained. In particular, it is shown

that a tight frame of windowed exponentials must have uniform Beurling

density.

1. Introduction

A sequence F = {fi}i∈I in a Hilbert space H is a frame for H if there exist

A, B > 0 such that A ‖f‖2 ≤
∑

i∈I |〈f, fi〉|2 ≤ B ‖f‖2 for all f ∈ H . Frames pro-

vide unconditional basis-like (but generally non-unique) representations of vec-

tors in H . They have applications in a wide range of areas, such as sampling

theory [1], operator theory [16], nonlinear sparse approximation [14], wavelet the-

ory [7], wireless communications [29], data transmission with erasures [13], signal

processing [3], and quantum computing [8].
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Let Ω be a bounded subset of Rd, let g ∈ L2(Ω), and let Λ be a sequence of

points in Rd. Then

E(g, Λ) = {e2πiλ·xg(x)}λ∈Λ

is a system of windowed exponentials in L2(Ω). These systems play important

roles in the theory of reconstruction from irregular samples, e.g., [15], [1]. Nec-

essary density conditions for E(g, Λ) to be a frame or Riesz basis for L2(Ω) are

known. In particular:

(a) if E(g, Λ) is a frame for L2(Ω) then D−(Λ) ≥ |Ω|, and

(b) if E(g, Λ) is a Riesz basis for L2(Ω) then D−(Λ) = D+(Λ) = |Ω|,

where D−(Λ), D+(Λ) denote the lower and upper Beurling densities of Λ, re-

spectively (see Definition 2.1). The value |Ω| is the Nyquist density. The precise

formulation of the Nyquist density is due to Landau [23], [24], in the context of

sampling and interpolation of band-limited functions. There is a rich literature

on this subject, as well as for related ideas concerning sampling in the Bargmann–

Fock space of entire functions and necessary density conditions for Gabor frames

in L2(Rd). Extensions to systems
⋃N

k=1 E(gk, Λk) with finitely many generators

are known and will be the setting of this paper, but for simplicity we will in this

introduction discuss only the case of a single generator.

Proofs of (a) and (b) were given (with some restrictions) by Gröchenig and

Razafinjatovo in [15], utilizing the idea of the Homogeneous Approximation Prop-

erty that had been introduced for Gabor systems in [28] (cf. the extensions and

applications in [6]). For a frame of windowed exponentials, the Homogeneous Ap-

proximation Property roughly states that for each f ∈ L2(Ω) and ε > 0, there is

a single R > 0 such that every modulation Mαf(x) = e2πiαxf(x) can be equally

well-approximated (to within ε) using only those frame elements whose indices λ

lie in the box QR(α) of sidelengths R centered at α. This is remarkable since Λ

is not assumed to have any structure whatsoever—there need not be any relation

between the points in Λ ∩ QR(α) for different α.

We have the following main purposes in this paper. (1) We prove that every

frame of windowed exponentials satisfies a Strong Homogeneous Approximation

Property with respect to its canonical dual frame and a Weak Homogeneous Ap-

proximation Property with respect to an arbitrary dual frame. (2) We give a

simple proof (without restrictions) of the Nyquist density phenomenon satisfied

by frames of windowed exponentials. (3) We present new results and conjectures

regarding Nyquist phenomena and the Homogeneous Approximation Property for

the more delicate cases of Schauder bases and exact systems of windowed expo-

nentials. (4) We present new results on the relationship between density and
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frame bounds for frames of windowed exponentials. In particular, we obtain the

new result that every tight frame of windowed exponentials (A = B) must have

uniform Beurling density. Tight frames are especially useful since the complexity

of implementing frame algorithms is strongly tied to the ratio B/A.

Our paper is organized as follows. In Section 2 we present our notation and

background on density, frames, and Schauder bases, and present some results

that we will need regarding the properties of the Fourier transforms of compactly

supported functions. Our main results are presented in Section 3. In Section 3.1

we show that Schauder bases and Bessel sequences must have finite upper density.

We show in Section 3.2 that all frames of windowed exponentials satisfy a strong

version of the HAP, and at least some Schauder bases of windowed exponentials

satisfy a weak version of the HAP. Section 3.3 presents the Comparison Theorem,

which shows that any frame or exact sequence which possesses this weak version

of the HAP must have a density greater than any Schauder basic sequence of

windowed exponentials. In Section 3.4 we derive necessary density conditions

for frames of windowed exponentials and obtain relations among the density of

the index set, the frame bounds, and the norms of the generators. Finally, in

Section 3.5 we derive necessary density conditions for certain classes of Schauder

bases and exact systems of windowed exponentials, and present some conjectures

and open problems regarding these systems.

2. Notation and Preliminaries

In this section we define our terminology and provide some background, dis-

cussion, and examples related to our results.

2.1. General notation. Throughout, Ω will be a bounded, measurable subset of

Rd. We regard any function g with domain Ω as being defined on Rd by setting

g(x) = 0 for x /∈ Ω. Consequently, Lp(Ω) ⊂ L1(Rd) for all 1 ≤ p ≤ ∞. The

Fourier transform of g ∈ L1(Rd) is ĝ(ξ) =
∫

Rd g(x) e−2πiξ·x dx.

Let Λ = {λi}i∈I be a sequence of points in Rd, with countable or uncountable

index set I (more precisely, this means that Λ is the function i 7→ λi). For

simplicity of notation, we will write Λ ⊂ Rd, but we always mean that Λ is

a sequence (in the above sense) and not merely a subset of Rd. In particular,

repetitions of elements in the sequence are allowed. We will say that Λ is a lattice

if Λ = A(Zd) where A is a d × d invertible matrix.
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Often we will deal with several sequences Λ1, . . . , ΛN ⊂ Rd, and will use the

notation Λ =
⋃N

k=1 Λk to denote the disjoint union of these sequences. In par-

ticular, if each Λk is countable and is indexed as Λk = {λjk}j∈N, then Λ is the

sequence Λ = {λ11, . . . , λ1N , λ21, . . . , λ2N , . . . }.

The translation of a function g by α ∈ Rd is Tαg(x) = g(x − α), and the

modulation of g by β ∈ Rd is Mβg(x) = e2πiβ·xg(x). Using this notation,

E(g, Λ) = {Mλg}λ∈Λ.

Given x ∈ Rd and h > 0, we let Qh(x) denote the half-open cube in Rd

centered at x with side lengths h, specifically, Qh(x) =
∏d

j=1 [xj −
h
2 , xj + h

2 ).

If H is a Hilbert space and fi ∈ H for i ∈ I , then span{fi}i∈I will denote

the finite linear span of {fi}i∈I , and span{fi}i∈I will denote the closure of this

set in H . The distance from a vector f ∈ H to a closed subspace V ⊂ H is

dist(f, V ) = inf{‖f − v‖ : v ∈ V } = ‖f − PV f‖, where PV is the orthogonal

projection onto V .

2.2. Beurling Density. Beurling density measures in some sense the average

number of points contained in unit cubes. The precise definition is as follows.

Definition 2.1. Let Λ = {λi}i∈I be a sequence of points in Rd. The lower and

upper Beurling densities of Λ are, respectively,

D−(Λ) = lim inf
h→∞

inf
β∈Rd

#
(

Λ ∩ Qh(β)
)

hd
,

D+(Λ) = lim sup
h→∞

sup
β∈Rd

#
(

Λ ∩ Qh(β)
)

hd
.

In general
∑N

k=1 D−(Λk) ≤ D−(
⋃N

k=1 Λk) ≤ D+(
⋃N

k=1 Λk) ≤
∑N

k=1 D+(Λk),

but these inequalities may be strict, e.g., consider Λ1 = {k ∈ Z : k ≥ 0} and

Λ2 = {k ∈ Z : k < 0}.

A sequence Λ satisfies D+(Λ) < ∞ if and only if Λ = Λ1 ∪ · · · ∪ΛN where each

Λk is δk-uniformly separated for some δk > 0, i.e., δk = infλ6=µ∈Λk
|λ − µ| > 0 for

each k [6, Lem. 2.3].

The following additional implications of finite density will be useful later. If

D+(Λ) < ∞ then there must exist a finite constant K0 such that #(Λ∩Q1(x)) ≤

K0 for every x ∈ Rd. If Qh(x) is a cube with side lengths h > 1, then it is possible

to cover Qh(x) using no more than (h + 1)d cubes of side lengths 1. Therefore,

for x ∈ Rd and h > 1 we have

#
(

Λ ∩ Qh(x)
)

≤ K0 (h + 1)d ≤ 2dK0 hd = 2dK0 |Qh(x)|.
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Similar observations apply to other types of sets besides cubes. For example, we

will later consider “square annuli” of the form Qh+r(x) \ Qh−r(x). With r fixed,

reasoning similar to the above shows that there is a constant K1 such that for all

x ∈ Rd and all h large enough,

#
(

Λ∩Qh+r(x)\Qh−r(x)
)

≤ K1 |Qh+r(x)\Qh−r(x)| = K1

(

(h+r)d−(h−r)d
)

.

More generally, these estimates are particular consequences of Landau’s proof

that the definition of Beurling density is unchanged if instead of dilating cubes we

dilate any compact set with unit measure whose boundary has measure zero [24],

cf. [22].

2.3. Bases and Frames. We use standard notations for Schauder bases as found

in the texts [25], [30], [33], and standard notations for frames and Riesz bases as

found in [5], [7], [33].

Definition/Facts 2.2. Let {fi}i∈N be a sequence in a Hilbert space H .

We say {fi}i∈N is complete if its finite linear span is dense in H . It is minimal

if there exists a sequence {f̃i}i∈N in H that is biorthogonal to {fi}i∈N, i.e.,

〈fi, f̃j〉 = δij for i, j ∈ N. Equivalently, {fi}i∈N is minimal if fj /∈ span{fi}i6=j

for each j ∈ N. A sequence that is both minimal and complete is called exact. In

this case the biorthogonal sequence is unique.

We say {fi}i∈N is a Schauder basis if for each f ∈ H there exist unique scalars

ci such that f =
∑∞

i=1 cifi. Every Schauder basis is exact, and the biorthogonal

sequence {f̃i}i∈N is also a basis, called the dual Schauder basis. Further, we have

(2.1) ∀ f ∈ H, f =

∞
∑

i=1

〈f, f̃i〉 fi =

∞
∑

i=1

〈f, fi〉 f̃i,

with uniqueness of the scalars in these expansions. The associated partial sum

operators are SN (f) =
∑N

i=1 〈f, f̃i〉 fi for f ∈ H . The basis constant is the finite

number K = supN ‖SN‖.

A Schauder basis {fi}i∈N is bounded if there exist C1, C2 > 0 such that

C1 ≤ ‖fi‖ ≤ C2 for every i. The dual basis {f̃i}i∈N of a bounded Schauder basis

is a bounded Schauder basis.

A Schauder basis {fi}i∈N is unconditional if the series in (2.1) converge un-

conditionally for every f . Consequently any countable index set can be used to

index an unconditional basis.

A Riesz basis is the image of an orthonormal basis under a continuously in-

vertible mapping of H onto itself. Every Riesz basis is a bounded unconditional

basis, and conversely.
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We say {fi}i∈N is a frame for H if there exist constants A, B > 0, called frame

bounds, such that

(2.2) ∀ f ∈ H, A ‖f‖2 ≤
∞
∑

i=1

|〈f, fi〉|
2 ≤ B ‖f‖2.

All Riesz bases are frames, but not conversely.

If {fi}i∈N satisfies at least the second inequality in (2.2) then we say that

{fi}i∈N is a Bessel sequence or that it possesses an upper frame bound, and we

call B a Bessel bound. Likewise if at least the first inequality in (2.2) is satisfied

then we say that {fi}i∈N possesses a lower frame bound.

A sequence {fi}i∈N is a Bessel sequence if and only if the analysis operator

Cf = {〈f, fi〉}i∈N is a bounded mapping C : H → `2. In this case, the adjoint

of C is the synthesis operator C∗ : `2 → H given by C∗({ci}i∈N) =
∑

cifi (the

series converges unconditionally in the norm of H). In particular, if B is a Bessel

bound then

(2.3) ∀ {ci}i∈N ∈ `2,

∥

∥

∥

∥

∑

i∈N

cifi

∥

∥

∥

∥

2

≤ B
∑

i∈N

|ci|
2.

Hence ‖fi‖2 ≤ B for every i, so every Bessel sequence is bounded above in norm.

If {fi}i∈N is a frame then the frame operator Sf = C∗Cf =
∑

〈f, fi〉 fi is a

bounded, positive definite, invertible map of H onto itself.

If {fi}i∈N is a frame and {g̃i}i∈N is a sequence in H such that f =
∑

〈f, g̃i〉 fi

for every f ∈ H , then {g̃i}i∈N is called a dual sequence to {fi}i∈N. By Lemma 2.3

below, if a dual sequence is a Bessel sequence then it is also a frame, and hence

is called a dual frame for {fi}i∈N. We show in Lemma 2.3 that in this case we

also have f =
∑

〈f, fi〉 g̃i for all f ∈ H .

Every frame F = {fi}i∈N has a canonical dual frame F̃ = {f̃i}i∈N given by

f̃i = S−1fi where S is the frame operator. In particular,

(2.4) ∀ f ∈ H, f =

∞
∑

i=1

〈f, f̃i〉 fi =

∞
∑

i=1

〈f, fi〉 f̃i,

and furthermore the series in (2.4) converges unconditionally for every f (so any

countable index set can be used to index a frame). Equation (2.4) is identical

to (2.1), but for a frame the coefficients in (2.4) need not be unique. In fact, if

F = {fi}i∈N is a frame and F̃ = {f̃i}i∈N is its canonical dual frame, then the

following statements are equivalent:

(i) F is a Riesz basis,

(ii) F is a Schauder basis,
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(iii) the coefficients in (2.4) are unique for each f ∈ H ,

(iv) F and its canonical dual frame F̃ are biorthogonal.

In case any one of these hold, the canonical dual frame F̃ coincides with the dual

basis of F .

We say that {fi}i∈N is a frame sequence, a Riesz sequence, or a Schauder basic

sequence if it is a frame, Riesz basis, or Schauder basis for its closed linear span

in H , respectively.

The following two results will be useful later.

Lemma 2.3. Let F = {fi}i∈I be a frame in a Hilbert space H. If G = {g̃i}i∈I is

a dual sequence that is a Bessel sequence, then G is a frame, and furthermore,

(2.5) ∀ f ∈ H, f =
∑

i∈I

〈f, g̃i〉 fi =
∑

i∈I

〈f, fi〉 g̃i.

Proof. Let A, B be frame bounds for F . Given f ∈ H , the first equality in

(2.5) is the definition of dual sequence. Consequently,

‖f‖4 = 〈f, f〉2 =

(

∑

i∈I

〈f, g̃i〉 〈fi, f〉

)2

≤

(

∑

i∈I

|〈f, g̃i〉|
2

)(

∑

i∈I

|〈fi, f〉|
2

)

≤

(

∑

i∈I

|〈f, g̃i〉|
2

)

B ‖f‖2.

Rearranging, we see that this implies that G has a lower frame bound of 1
B . Since

we already know that it has an upper frame bound, we conclude that G is a frame.

To show the second equality in (2.5), fix any f ∈ H . Since G is a frame and

{〈f, fi〉}i∈I ∈ `2, the series g =
∑

〈f, fi〉 g̃i converges unconditionally to some

element of H . However, for any h ∈ H we have

〈h, f〉 =
〈

∑

i∈I

〈h, g̃i〉 fi, f
〉

=
∑

i∈I

〈h, g̃i〉 〈fi, f〉 =
〈

h,
∑

i∈I

〈f, fi〉 g̃i

〉

= 〈h, g〉,

so f = g. �

Lemma 2.4. Let F = {fi}i∈I be an exact sequence in a Hilbert space H, and let

F̃ = {f̃i}i∈I be its biorthogonal sequence.

(a) If F is Bessel with Bessel bound B and F̃ is complete, then F̃ possesses

a lower frame bound of 1
B . Furthermore, F̃ is exact and is norm-bounded

below.

(b) If F possesses a lower frame bound A, then F̃ is Bessel with Bessel

bound 1
A . Furthermore, F̃ is norm-bounded above.
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Proof. (a) We must show that 1
B ‖f‖2 ≤

∑

|〈f, f̃i〉|2 for all f ∈ H . If
∑

|〈f, f̃i〉|2

is infinite then this is trivial, so assume
∑

|〈f, f̃i〉|2 < ∞. Since F is Bessel, the

series g =
∑

〈f, f̃i〉 fi converges unconditionally in H . By biorthogonality, we

have 〈g, f̃i〉 = 〈f, f̃i〉 for all i ∈ I , and since F̃ is complete, this implies g = f .

Consequently, by Cauchy–Schwarz and the fact that F is Bessel, we have

‖f‖4 =

(

∑

i∈I

〈f, f̃i〉 〈fi, f〉

)2

≤

(

∑

i∈I

|〈f, f̃i〉|
2

)(

∑

i∈I

|〈f, fi〉|
2

)

≤

(

∑

i∈I

|〈f, f̃i〉|
2

)

B ‖f‖2.

Rearranging therefore gives the desired inequality. Finally, by biorthogonality and

the fact that F is Bessel, we have for each j ∈ I that 1 =
∑

i |〈f̃j , fi〉|2 ≤ B ‖f̃j‖2,

so F̃ is norm-bounded below.

(b) Let c = {ci}i∈I ∈ `2(I) be given. If F is a finite subset of I , then by

definition of lower frame bound and by biorthogonality,

(2.6) A

∥

∥

∥

∥

∑

i∈F

cif̃i

∥

∥

∥

∥

2

≤
∑

j∈I

∣

∣

∣

∣

〈

∑

i∈F

cif̃i, fj

〉
∣

∣

∣

∣

2

=
∑

i∈F

|ci|
2.

Consequently, Dc =
∑

i∈I cif̃i converges unconditionally for each c ∈ `2(I), and

the estimate in (2.6) extends to hold with I in place of F . Hence the synthesis

operator D : `2(I) → H is bounded with ‖D‖2 ≤ 1
A . Therefore the analysis

operator C = D∗ : H → `2(I) also satisfies ‖C‖2 ≤ 1
A . Since Cf = {〈f, f̃i〉}i∈I ,

we see that F̃ is Bessel with Bessel bound 1
A , and hence is bounded above in

norm. �

2.4. Examples in L2[− 1
2 , 1

2 ]. We give now some basic results and illustrative

examples of sequences of windowed exponentials on the domain Ω = [− 1
2 , 1

2 ].

Lemma 2.5. Given g ∈ L2[− 1
2 , 1

2 ] and Λ = Z, the following statements hold.

(a) E(g,Z) is a Bessel sequence in L2[− 1
2 , 1

2 ] with Bessel bound B > 0 if and

only if g ∈ L∞[− 1
2 , 1

2 ] with |g(x)|2 ≤ B a.e. In this case the optimal

Bessel bound is B = ‖g‖2
∞.

(b) E(g,Z) is a frame for L2[− 1
2 , 1

2 ] with frame bounds A, B > 0 if and only

if A ≤ |g(x)|2 ≥ B a.e.

(c) E(g,Z) is complete in L2[− 1
2 , 1

2 ] if and only if g(x) 6= 0 a.e.

(d) E(g,Z) is minimal in L2[− 1
2 , 1

2 ] if and only if 1/g ∈ L2[− 1
2 , 1

2 ]. In this

case, E(g,Z) is exact.
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(e) E(g,Z) is a frame with frame bounds A, B > 0 if and only if A ≤ |g(x)|2 ≤

B a.e. In this case the frame is a Riesz basis.

Proof. (a) Assume that E(g,Z) is Bessel. Then for f ∈ L∞[− 1
2 , 1

2 ] we have that

‖fḡ‖2
2 =

∑

n∈Z

|(fḡ)∧(n)|2 =
∑

n∈Z

|〈f, Mng〉|2 ≤ B ‖f‖2
2,

the first equality following from the fact that {e2πinx}n∈Z forms an orthonormal

basis for L2[− 1
2 , 1

2 ]. Rearranging, we see that
∫ 1/2

−1/2
|f(x)|2 (B − |g(x)|2) dx ≥ 0.

If we had |g(x)|2 > B on some set S of positive measure, then taking f = χS

would yield a contradiction. Hence |g(x)|2 ≤ B a.e. The converse is similar.

(b), (c), (e) These proofs are similar to the proof of statement (a).

(d) If 1/g ∈ L2[− 1
2 , 1

2 ], then Ẽ = E(1/ḡ,Z) = {e2πinx/g(x)}n∈Z is biorthogonal

to E(g,Z).

Conversely, suppose that there exists some biorthogonal system Ẽ = {g̃n}n∈Z

to E(g,Z). Then for each m ∈ Z we have

δmn = 〈g̃m, Mng〉 = (g̃mḡ)∧(n).

Since g̃mḡ ∈ L1[− 1
2 , 1

2 ] and Fourier coefficients of L1 functions are unique, we

conclude that g̃m(x)g(x) = e2πimx a.e. Consequently, we have that 1/g(x) =

g̃0(x) ∈ L2[− 1
2 , 1

2 ]. �

It is interesting to note that there is no known example of a set of non-windowed

exponentials E(χ[− 1
2
, 1
2
], Λ) = {e2πiλx}λ∈Λ which forms a Schauder basis but not a

Riesz basis for L2[− 1
2 , 1

2 ], and no proof that such a system cannot exist. However,

we see in the next example that there do exist windowed exponentials which form

a Schauder basis but not a Riesz basis. In this example we have Λ = Z, so

D±(Λ) = 1 = |Ω|.

Example 2.6. Fix 0 < α < 1
2 . Then g(x) = |x|α and g̃(x) = |x|−α both belong to

L2[− 1
2 , 1

2 ]. Therefore E(g,Z) = {e2πinx|x|α}n∈Z and E(g̃,Z) = {e2πinx|x|−α}n∈Z

are biorthogonal systems in L2[− 1
2 , 1

2 ] and hence are minimal. It is a deeper result,

due to Babenko [2], that these systems are actually Schauder bases for L2[− 1
2 , 1

2 ]

(see also the discussion in [30, pp. 351–354]). Since these systems are obtained

by taking the orthonormal basis {e2πinx}n∈Z and performing an operation that

is not a continuous bijection (i.e., multiplying by the function |x|α which has a

zero or by the unbounded function |x|−α), they are not Riesz bases. On the other

hand, these systems do possess one but not both frame bounds. Specifically,
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{e2πinx|x|α}n∈Z is a Bessel sequence while {e2πinx|x|−α}n∈Z possesses a lower

frame bound.

The following is an example of an exact system of windowed exponentials in

L2[− 1
2 , 1

2 ] which is not a Schauder basis. In this example we have Λ = Z\{0}, so

D±(Λ) = 1 = |Ω|.

Example 2.7. Set g(x) = x, and note that 1/g(x) = 1/x /∈ L2[− 1
2 , 1

2 ]. We will

show that E(g,Z\{0}) = {xe2πinx}n6=0 is an exact system in L2[− 1
2 , 1

2 ] that is not

a Schauder basis. Since Λ 6= Z in this example, we cannot appeal to Lemma 2.5

to show these facts.

To show completeness, suppose f ∈ L2[− 1
2 , 1

2 ] is such that 〈f(x), xe2πinx〉 = 0

for all n 6= 0. Then the function xf(x) ∈ L1[− 1
2 , 1

2 ] satisfies 〈xf(x), e2πinx〉 = 0

for n 6= 0. Since Fourier coefficients of L1-functions are unique, we conclude that

xf(x) = c a.e., where c is a constant. If c 6= 0 then we have f(x) = c/x /∈

L2[− 1
2 , 1

2 ], which is a contradiction. Therefore c = 0, and hence f = 0 a.e. Thus

E(g,Z\{0}) is complete.

Now define g̃n(x) = e2πinx−1
x for n 6= 0. Note that

‖g̃n‖
2
2 = 8 (−1)n − 8 + 8πn

∫ 1
2

0

sin 2πnx

x
dx < ∞,

so g̃n ∈ L2[− 1
2 , 1

2 ]. Further, for m, n 6= 0,

〈xe2πimx, g̃n(x)〉 = 〈e2πimx, e2πinx − 1〉 = δmn.

Therefore Ẽ = {g̃n}n6=0 is biorthogonal to E(g,Z\{0}), and thus each of these

sequences are minimal in L2[− 1
2 , 1

2 ]. In particular, E(g,Z\{0}) is exact.

Now, if E(g,Z\{0}) was a Schauder basis, then it would be a bounded basis, and

hence its dual basis would also be a bounded basis. But since
∫ 1

2

0
sin 2πnx

x dx → π
2

as n → ∞, we see that ‖g̃n‖2 is not uniformly bounded above in norm. Therefore,

while E(g,Z\{0}) is exact, it is not a Schauder basis.

Let us make some remarks concering the preceding example. Consider the

following question. Let F be a finite subset of Z. If we remove elements corre-

sponding to F from the orthonormal basis {e2πinx}n∈Z, will there always exist a

function g such that E(g,Z\F ) = {e2πinx}n∈Z is complete? Example 2.7 shows

that if F = {0}, then the answer is yes, with g(x) = x. In their classic paper on

multiplicative completion, Boas and Pollard showed that the answer is yes for for

finite subset F [4]. There are a surprising number of equivalent reformulations

and interesting related results, for which we refer to the paper by Kazarian and

Zink [20] and the references contained therein.
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Expanding on the preceding paragraph, completeness is of course quite a dif-

ferent issue than being a basis. The fact remarked on in Example 2.7 that

E(g,Z\{0}) is not a Schauder basis for L2[− 1
2 , 1

2 ] is just a special case of the more

general results proved by Kazarian in [18], [19]. In particular, it is shown there

that if F ⊂ Z is finite and nonempty, then E(g,Z\F ) can never be a Schauder

basis for Lp[− 1
2 , 1

2 ] for any g.

The preceding remarks concern questions regarding systems E(g, Λ) that are

derived in some way from an orthonormal basis. The main thrust of this paper

is different; we are concerned with systems where Λ is not required to have any

structure whatsoever. In particular, Λ need not be a subset of a lattice.

Following are a few further remarks concerning Example 2.7.

Remark 2.8. (a) Example 2.7 can also be interpreted in terms of sampling from

derivatives. By taking the Fourier transform, the fact that E(g,Z\{0}) is exact

but not a Schauder basis implies that any function f ∈ L2(R) that is bandlimited

to [− 1
2 , 1

2 ] (i.e., supp(f̂) ⊂ [− 1
2 , 1

2 ]) is determined by the samples {f ′(n)}n6=0 of

its derivative, but f cannot be stably reconstructed from these values in general.

(b) Example 2.7 behaves similarly to the case of the Gabor system G(γ,Z2) =

{e2πimxγ(x−n)}m,n∈Z in L2(R) generated by the Gaussian function γ(x) = e−x2

.

By applying the Zak transform, it can be shown that G(γ,Z2) is overcomplete by

a single element, meaning that one but not two elements can be removed and still

leave a complete set. Furthermore, G(γ,Z2\(0, 0)) is exact but is not a Schauder

basis for L2(R).

(c) In Example 2.7, if we include the index n = 0 the system E(x,Z) is still

not a frame for L2[− 1
2 , 1

2 ], and similarly E(x − 1
2 ,Z) is not a frame, but the

two-generator system E(x,Z) ∪ E(x − 1
2 ,Z) is a frame for L2[− 1

2 , 1
2 ], since

∑

n∈Z

|〈f(x), xe2πinx〉|2 +
∑

n∈Z

|〈f(x), (x − 1
2 )e2πinx〉|2

=

∫ 1
2

− 1
2

(

x2 + (x − 1
2 )2

)

|f(x)|2 dx,

and x2 + (x − 1
2 )2 is bounded both above and below.

(d) In Example 2.6, the dual basis of the system of windowed exponentials

E(g,Z) was another system of windowed exponentials E(g̃,Z). However, in Ex-

ample 2.7, the system biorthogonal to E(g,Z\{0}) was not itself a system of

windowed exponentials. This is not a consequence of the fact that this second
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example is not a basis, but rather is due to the fact that the index set Z\{0} is

not a lattice.

In the following example, we see a system Λ which contains subsets that are

lattices, but which is not itself a lattice. In particular, Λ is not uniformly sepa-

rated.

Example 2.9. This example is a special case of the results in [32]. Let Λ1 =
1

2σ1
Z, Λ2 = 1

2σ2
Z \ {0}, and Λ3 = {0}, where σ1 = 1

2(1+
√

2)
and σ2 =

√
2

2(1+
√

2)
.

Note that the two lattices 1
2σ1

Z and 1
2σ2

Z intersect only at 0, so Λ1 and Λ2 are

disjoint. Further, Λ = Λ1 ∪ Λ2 ∪ Λ3 (disjoint union, preserving the repetition of

the point 0) is not uniformly separated, but does have uniform Beurling density

D±(Λ) = 2σ1 + 2σ2 = 1 = |Ω|. It is shown in [32] that

E = E(χ[− 1
2
, 1
2
], Λ1) ∪ E(χ[− 1

2
, 1
2
], Λ2) ∪ E(xχ

[− 1
2
, 1
2
], Λ3)

= {eπinx/σ1}n6=0 ∪ {eπinx/σ2}n6=0 ∪ {1, x}

has the following properties.

(a) E is exact, is Bessel but not a frame, and is not a Schauder basis for

L2[− 1
2 , 1

2 ].

(b) The biorthogonal system of E is exact, is unbounded above in norm, and

is not Bessel but does possess a lower frame bound.

(c) Although not a Schauder basis, E does satisfy the somewhat more general

definition of a basis with braces, or a Riesz basis from subspaces.

2.5. Existence of Frames and Riesz sequences in L2(Ω). The so-called Spec-

tral Set or Fuglede Conjecture is that given Ω ⊂ Rd, there exists a sequence

Λ ⊂ Rd such that E(χΩ, Λ) is an orthonormal basis for L2(Ω) if and only if

Ω tiles Rd (with overlaps of measure zero) under a set of translations. This

conjecture has recently been shown to be false for d ≥ 4 (but is open in lower

dimensions), see [31], [21], [26].

In contrast, we show in the following lemma that, as long as the boundary

of Ω has measure zero, it is always possible to construct a system of windowed

exponentials with finitely many generators that forms an orthonormal sequence or

a tight frame for L2(Ω), and furthermore the density of the corresponding index

set lies within ε of the Lebesgue measure of Ω.

Lemma 2.10. Let Ω be a bounded subset of Rd such that |∂Ω| = 0, and let ε > 0

be given.
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(a) There exist functions g1, . . . , gM ∈ L2(Ω) and lattices ∆1, . . . , ∆M such

that
⋃M

k=1 E(gk, ∆k) is an orthonormal sequence in L2(Ω), and further-

more |Ω| − ε ≤ D±(∆) ≤ |Ω|, where ∆ =
⋃M

k=1 ∆k.

(b) There exist functions h1, . . . , hN ∈ L2(Ω) and lattices Γ1, . . . , ΓN such

that
⋃N

k=1 E(hk, Γk) is a Parseval frame for L2(Ω), and furthermore,

|Ω| ≤ D±(Γ) ≤ |Ω| + ε, where Γ =
⋃N

k=1 Γk.

Proof. (a) Since |∂Ω| = 0, we may assume that Ω is open, and therefore there

exist cubes R1, . . . , RM ⊂ Ω with disjoint interiors such that Ω0 =
⋃M

k=1 Rk

satisfies |Ω| − ε ≤ |Ω0| ≤ |Ω|. Set gk = |Rk|−1/2 χRk
. Since Rk is a cube, there

exists a lattice ∆k contained in Rd such that E(gk, ∆k) is an orthonormal basis

for L2(Rk). Then
⋃M

k=1 E(gk, ∆k) is an orthonormal basis for L2(Ω0) and is an

orthonormal sequence in L2(Ω). Because the ∆k are lattices we have D±(∆k) =

|Rk| and D±(
⋃M

k=1 ∆k) =
∑M

k=1 D±(∆k) =
∑M

k=1 |Rk| = |Ω0|.

(b) Since |∂Ω| = 0, we may assume that Ω is open, and therefore there exist

cubes S1, . . . , SN with disjoint interiors such that Ω1 =
⋃N

k=1 Sk contains Ω and

satisfies |Ω| ≤ |Ω1| ≤ |Ω| + ε. Set fk = |Sk|−1/2 χSk
. Then there exist lattices

Γk such that
⋃N

k=1 E(fk, Γk) is an orthonormal basis for L2(Ω1). The mapping

f 7→ fχΩ is an orthogonal projection of L2(Ω1) onto L2(Ω), and the image of

an orthonormal basis under an orthogonal projection is a tight frame. Therefore,

if we set hk = fkχΩ then
⋃N

k=1 E(hk, Γk) is a tight frame for L2(Ω), and by

rescaling by an appropriate constant we can make it a Parseval frame. Further,

D±(
⋃M

k=1 Γk) =
∑M

k=1 D±(Γk) =
∑M

k=1 |Sk| = |Ω1|. �

2.6. Amalgam Space Properties of the Fourier Transform. Special cases

of amalgam spaces were first introduced by Wiener, and subsequently many other

special cases were introduced in the literature. A comprehensive general theory of

amalgam spaces was introduced and extensively studied by Feichtinger, e.g., see

[9], [10], [11]. For an expository introduction to Wiener amalgams with extensive

references to the original literature, we refer to [17].

For our purposes, we will require only the following special case of Wiener

amalgams.

Definition 2.11. Given 1 ≤ p, q ≤ ∞, and α > 0, the Wiener amalgam

W (Lp, `q) consists of all functions F on Rd for which

‖F‖W (Lp,`q) =

(

∑

k∈Zd

‖F · χQα(αk)‖
q
p

)1/q

< ∞,

with the usual adjustment if q = ∞.
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W (Lp, `q) is a Banach space, and its definition is independent of the value of α

in the sense that each choice of α yields the same vector space under an equivalent

norm. The space

W (C, `q) = {F ∈ W (L∞, `q) : F is continuous}

is a closed subspace of W (L∞, `q). Note that we have the inclusion

Lp(Rd) = W (Lp, `p) ⊂ W (L1, `p),

and furthermore by [12, Thm. 7.1(b)] (compare [17, Thm. 11.8.3]) we have the

following convolution relations:

Lp(Rd) ∗ W (L∞, `1) ⊂ W (L1, `p) ∗ W (L∞, `1)(2.7)

⊂ W (L1 ∗ L∞, `p ∗ `1) ⊂ W (L∞, `p),

and

L1(Rd) ∗ W (L∞, `p) = W (L1, `1) ∗ W (L∞, `p)(2.8)

⊂ W (L1 ∗ L∞, `1 ∗ `p) ⊂ W (L∞, `p),

with corresponding norm inequalities

‖F ∗ G‖W (L∞,`p) ≤ C ‖F‖p ‖G‖W (L∞,`1),

‖F ∗ G‖W (L∞,`p) ≤ C ‖F‖1 ‖G‖W (L∞,`p),

where C is a constant independent of F and G.

We now derive some amalgam space properties of the Fourier transforms of

compactly supported functions.

Proposition 2.12. Let Ω be a bounded subset of Rd, and let 1 ≤ p ≤ 2 be given.

Then for f ∈ L2(Ω) we have

f̂ ∈ Lp(Rd) =⇒ f̂ ∈ W (C, `p).

In particular, f̂ ∈ W (C, `2) for every f ∈ L2(Ω), and we have the norm estimate

‖f̂‖W (C,`2) = ‖f̂‖W (L∞,`2) ≤ C ‖f̂‖2 = C ‖f‖2.

Proof. Let ϕ be any compactly supported function such that ϕ(x) = 1 for

x ∈ Ω and ϕ̂ ∈ W (C, `1). Suppose f ∈ L2(Ω) is such that f̂ ∈ Lp(Rd). Then

f = fϕ, so by (2.7) we have f̂ = f̂ ∗ ϕ̂ ∈ Lp(Rd) ∗ W (L∞, `1) ⊂ W (L∞, `p),

with a corresponding norm estimate. Since f ∈ L1(Ω), we also have that f̂ is

continuous, and therefore f̂ ∈ W (C, `p). �

As a corollary, we obtain a sufficient condition for E(g, Λ) to be a Bessel se-

quence.
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Corollary 2.13. Let Ω ⊂ Rd be bounded. If g ∈ L2(Rd) and Λ ⊂ Rd are such

that

(a) ĝ ∈ L1(Rd), and

(b) D+(Λ) < ∞,

then E(g, Λ) is a Bessel sequence in L2(Ω).

Proof. Since D+(Λ) < ∞, we can write Λ =
⋃N

k=1 Λk where each Λk is δk-

uniformly separated for some δk > 0. Let δ = min{δ1/2, . . . , δN/2}. Then any

cube with side lengths δ can contain at most one element of any Λk, and each

element of Λk lies in some cube of the form Qδ(nδ) with n ∈ Zd. Given f ∈ L2(Ω)

we have (fḡ)∧ = f̂∗ˆ̄g ∈ W (L∞, `2)∗L1(Rd) ⊂ W (L∞, `2) by (2.8). Consequently,

∑

λ∈Λ

|〈f, Mλg〉|2 =

N
∑

k=1

∑

λ∈Λk

|(fḡ)∧(λ)|2

≤
N

∑

k=1

∑

n∈Zd

sup
ξ∈Qδ(δn)

|(fḡ)∧(ξ)|2

= N ‖(fḡ)∧‖2
W (L∞,`2)

= N ‖f̂ ∗ ˆ̄g‖2
W (L∞,`2)

≤ C1N ‖f̂‖2
W (L∞,`2) ‖ˆ̄g‖2

1 ≤ C2N ‖ˆ̄g‖2
1 ‖f‖

2
2,

so E(g, Λ) is Bessel with Bessel bound C2N ‖ˆ̄g‖2
1. �

3. Density of Windowed Exponentials

We now develop our main results on the density of systems of windowed expo-

nentials, and on the relationships between density and frame bounds for frames

of windowed exponentials.

3.1. Upper Density Estimates. Olson and Zalik proved in [27] that a neces-

sary condition for a system {g(x − α)}α∈Γ of pure translates to be a Schauder

basis for Lp(R) is that Γ be uniformly separated. We prove an analogous result

for Schauder basic sequences of windowed exponentials. For this result, no Hilbert

space structure is needed; instead the essential ingredient is the continuity prop-

erties of modulation. For example, the spaces Lp(Ω) satisfy the hypotheses of the

following lemma. The isometry hypothesis can be weakened further so that more

function spaces are included; we omit the details. Although an exact sequence
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need not be uniformly separated (compare Example 2.9), we do not know if every

minimal sequence of windowed exponentials must have finite density.

Lemma 3.1. Let X be any Banach space of complex-valued functions defined on

Rd such that:

(a) modulation is an isometry on X, i.e., ‖Mβf‖ = ‖f‖ for all f ∈ X and

β ∈ Rd, and

(b) modulation is strongly continuous, i.e., limβ→0 ‖Mβf − f‖ = 0 for all

f ∈ X.

Let g ∈ X and Λ ⊂ Rd be such that E(g, Λ) is a Schauder basic sequence in X.

Then Λ is uniformly separated, i.e., δ = infλ6=µ∈Λ |λ − µ| > 0. In particular,

D+(Λ) < ∞.

Proof. By hypothesis, E(g, Λ) is a Schauder basis for its closed span Y =

span(E(g, Λ)) within X . Therefore there exists an ordering E(g, Λ) = {Mλn
g}n∈N

and a biorthogonal system Ẽ = {g̃n}n∈N ⊂ Y ∗ such that

f =

∞
∑

k=1

〈f, g̃k〉Mλk
g, f ∈ Y.

Let SN : Y → Y be the partial sum operators SN (f) =
∑N

k=1 〈f, g̃k〉Mλk
g, f ∈ Y .

Fix ε > 0. Since modulation is strongly continuous, there exists a constant

h > 0 such that ‖Mβg − g‖ < ε whenever |β| < h. Suppose that Λ was not

uniformly separated. Then there exist m < n such that |λm − λn| < h, and,

consequently, if we set

fm,n = Mλm
g − Mλn

g,

then we have ‖fm,n‖ < ε. Since E(g, Λ) and Ẽ are biorthogonal,

Sm(fm,n) =

m
∑

k=1

〈Mλm
g, g̃k〉Mλk

g −
m

∑

k=1

〈Mλn
g, g̃k〉Mλk

g = Mλm
g,

and hence ‖Sm(fm,n)‖ = ‖g‖. But then

‖Sm‖ = sup
‖f‖=1

‖Sm(f)‖ ≥
‖Sm(fm,n)‖

‖fm,n‖
>

‖g‖

ε
.

Since ε is arbitrary, this contradicts the fact that E(g, Λ) has a finite basis constant

K = supN ‖SN‖. �

We show next that any nontrivial Bessel sequence E(g, Λ) in L2(Ω) must have

finite upper density. While this does not imply that Λ is uniformly separated, it

does imply that Λ must be the union of at most finitely many separated sequences.
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Lemma 3.2. Let Ω be a bounded subset of Rd. If g ∈ L2(Ω) \ {0} and Λ ⊂ Rd

are such that E(g, Λ) is a Bessel sequence in L2(Ω), then D+(Λ) < ∞.

Proof. Assume that D+(Λ) = ∞. Choose any f ∈ L2(Ω) with ‖f‖2 = 1. Then

fḡ ∈ L1(Ω) ⊂ L1(Rd), so (fḡ)∧ is continuous on Rd. Since (fḡ)∧ is not the zero

function, it must be bounded away from zero on some cube Qδ(γ), i.e., there exist

some γ ∈ Rd and δ > 0 such that

m = inf
ω∈Qδ(γ)

|(fḡ)∧(ω)| > 0.

Now choose any N > 0. Since D+(Λ) = ∞, there exists some cube Qδ(ξ) which

contains at least N elements of Λ. Set h = Mξ−γf . If λ ∈ Qδ(ξ), then λ− ξ +γ ∈

Qδ(γ), so
∑

λ∈Λ

|〈h, Mλg〉|2 ≥
∑

λ∈Λ∩Qδ(ξ)

|〈Mξ−γf, Mλg〉|2

=
∑

λ∈Λ∩Qδ(ξ)

|〈f, Mλ−ξ+γg〉|2

=
∑

λ∈Λ∩Qδ(ξ)

|(fḡ)∧(λ − ξ + γ)|2 ≥ Nm2.

Since ‖h‖2 = ‖f‖2 = 1 and N is arbitrary, it follows that E(g, Λ) cannot possess

an upper frame bound. �

Lemmas 3.1 and 3.2 extend immediately to the case of finitely many generators.

For example, if
⋃N

k=1 E(gk, Λk) is a Bessel sequence then each individual system

E(gk, Λk) is itself a Bessel sequence and therefore each Λk must have finite density

by Lemma 3.2.

3.2. Definition and Basic Properties of the HAP. Ramanathan and Ste-

ger [28] proved (with some restrictions) that for Gabor frames in L2(Rd), the

frame expansions in (2.4) have a certain kind of uniformity of convergence with

respect to translations and modulations. This property is called the Homogeneous

Approximation Property (HAP), and it is a key property in deriving density re-

sults for Gabor frames.

A version of the HAP (with restrictions on the generators) for frames of trans-

lates of band-limited functions was proved by Gröchenig and Razafinjatovo in [15].

By applying the Fourier transform, this yields a HAP for frames of windowed ex-

ponentials. We will show in Section 3.3 that any frame of windowed exponentials,

without restrictions, possesses a strong version of the HAP with respect to its
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canonical dual frame, and furthermore possesses a weak HAP with respect to any

dual frame. We further show in Section 3.4 that a Schauder basis of windowed

exponentials possesses a weak version of the HAP if the generating function satis-

fies some extra conditions, or if at least a lower frame condition is satisfied. Thus,

we do not only recover the results of [15], but we extend the impact of the HAP

to new settings. Further, in comparison to the results of Ramanathan and Steger

(which applied to Gabor frames rather than systems of windowed exponentials),

even considering only the case of the HAP for the canonical dual frame, our re-

sults apply far more generally—we do not need to assume that the index set has

positive and finite density, we are not restricted to one dimension or to a single

generator, and we avoid the considerable technicality of their approach (which

relied on weak convergence of sequences).

Recall that, in general, if E(g, Λ) is a Schauder basis or a frame for L2(Ω),

then the dual basis or dual frame will be some set of functions Ẽ = {g̃λ}λ∈Λ from

L2(Ω), but it need not itself form a set of windowed exponentials. The same

remarks apply to the case of systems with multiple generators.

Definition 3.3 (HAP). Let Ω be a bounded subset of Rd. Let g1, . . . , gN ∈ L2(Ω)

and Λ1, . . . , ΛN ⊂ Rd be such that E =
⋃N

k=1 E(gk, Λk) =
⋃N

k=1{Mλgk}λ∈Λk
is

a frame or an exact sequence for L2(Ω). Let Ẽ =
⋃N

k=1{g̃λ,k}λ∈Λk
be either any

dual sequence (if E is a frame) or the biorthogonal system in L2(Ω) (if E is exact).

For h > 0 and α ∈ Rd, set

(3.1) W (h, α) = span
{

g̃λ,k : λ ∈ Λk ∩ Qh(α), k = 1, . . . , N
}

.

(a) We say that E possesses the Weak Homogeneous Approximation Property

(Weak HAP) with respect to Ẽ if for each f ∈ L2(Ω),

(3.2)
∀ ε > 0, ∃R = RW (f, ε) > 0 such that ∀α ∈ Rd,

dist
(

Mαf, W (R, α)
)

< ε.

(b) We say that E possesses the Strong Homogeneous Approximation Property

(Strong HAP) with respect to Ẽ if for each f ∈ L2(Ω),

(3.3)

∀ ε > 0, ∃R = RS(f, ε) > 0 such that ∀α ∈ Rd,
∥

∥

∥

∥

Mαf −
N

∑

k=1

∑

λ∈Λk∩QR(α)

〈Mαf, Mλgk〉 g̃λ,k

∥

∥

∥

∥

2

< ε.

We refer to RW (f, ε) or RS(f, ε) as associated radius functions.
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Remark 3.4. (a) We will simply write that “E satisfies the Weak HAP” if E

satisfies the Weak HAP with respect to its canonical dual frame (if E is a frame)

or its biorthogonal sequence (if E is exact), and similarly for the Strong HAP.

(b) Note that in Definition 3.3, if
⋃N

k=1 E(gk, Λk) is a frame or Schauder basis for

L2(Ω), then each subsequence E(gk, Λk) is either a Bessel sequence or a Schauder

basis for its closed span in L2(Ω). Lemmas 3.1 or 3.2 therefore imply that each

Λk has finite density. Consequently, each Λk ∩Qh(α) is a finite set, and therefore

each W (h, α) is finite-dimensional in this case.

Lemma 3.5. Using the same notation as Definition 3.3, the following statements

hold.

(a) The Strong HAP implies the Weak HAP.

(b) If E is a Riesz basis, then the Weak HAP implies the Strong HAP.

Proof. (a) The function
∑N

k=1

∑

λ∈Λk∩QR(α)〈Mαf, Mλgk〉 g̃λ,k is one element of

the space W (R, α), so

dist
(

Mαf, W (R, α)
)

≤

∥

∥

∥

∥

Mαf −
N

∑

k=1

∑

λ∈Λk∩QR(α)

〈Mαf, Mλgk〉 g̃λ,k

∥

∥

∥

∥

2

.

Therefore the Strong HAP implies the Weak HAP.

(b) Assume that E is a Riesz basis that satisfies the Weak HAP. Then the

biorthogonal system Ẽ is also a Riesz basis, and if A, B are frame bounds for E ,

then 1
B , 1

A are frame bounds for Ẽ , so

1

B

N
∑

k=1

∑

λ∈Λk

|aλ,k|
2 ≤

∥

∥

∥

∥

N
∑

k=1

∑

λ∈Λk

aλ,k g̃λ,k

∥

∥

∥

∥

2

2

≤
1

A

N
∑

k=1

∑

λ∈Λk

|aλ,k|
2

for any square-summable sequence of scalars (aλ,k), cf. [33, p. 27]. Fix any ε > 0

and f ∈ L2(Ω). Define RS(f, ε) = RW (f, εA/B), and call this quantity R. Then

there are scalars cλ,k(α) such that

∀α ∈ Rd,

∥

∥

∥

∥

Mαf −
N

∑

k=1

∑

λ∈Λk∩QR(α)

cλ,k(α) g̃λ,k

∥

∥

∥

∥

2

<
εA

B
.
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Since Mαf =
∑N

k=1

∑

λ∈Λk
〈Mαf, Mλgk〉 g̃λ,k, it follows that

∥

∥

∥

∥

Mαf −
N

∑

k=1

∑

λ∈Λk∩QR(α)

〈Mαf, Mλgk〉 g̃λ,k

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

N
∑

k=1

∑

λ∈Λk\QR(α)

〈Mαf, Mλgk〉 g̃λ,k

∥

∥

∥

∥

2

2

≤
1

A

N
∑

k=1

∑

λ∈Λk\QR(α)

|〈Mαf, Mλgk〉|
2

≤
1

A

( N
∑

k=1

∑

λ∈Λk\QR(α)

|〈Mαf, Mλgk〉|
2

+

N
∑

k=1

∑

λ∈Λk∩QR(α)

|〈Mαf, Mλgk〉 − cλ,k(α)|2
)

≤
B

A

∥

∥

∥

∥

N
∑

k=1

∑

λ∈Λk\QR(α)

〈Mαf, Mλgk〉 g̃λ,k

+

N
∑

k=1

∑

λ∈Λk∩QR(α)

(〈Mαf, Mλgk〉 − cλ,k(α)) g̃λ,k

∥

∥

∥

∥

2

2

=
B

A

∥

∥

∥

∥

Mαf −
N

∑

k=1

∑

λ∈Λk∩QR(α)

cλ,k(α) g̃λ,k

∥

∥

∥

∥

2

2

< ε.

Therefore E satisfies the Strong HAP. �

The next lemma shows that, assuming appropriate hypotheses, in order to

establish that the HAP holds, it suffices to check that the relevant condition

(equation (3.2) or (3.3)) holds for a complete subset of L2(Ω).

Lemma 3.6. Let Ω be a bounded subset of Rd. Let g1, . . . , gN ∈ L2(Ω) and

Λ1, . . . , ΛN ⊂ Rd be such that E =
⋃N

k=1 E(gk, Λk) =
⋃N

k=1{Mλgk}λ∈Λk
is a

frame or an exact sequence for L2(Ω). Let Ẽ =
⋃N

k=1{g̃λ,k}λ∈Λk
be either any

dual sequence (if E is a frame) or the biorthogonal system in L2(Ω) (if E is exact).

Then the following statements hold.

(a) H0 = {f ∈ L2(Ω) : equation (3.2) holds} is a closed subspace of L2(Ω).
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(b) If we assume that E is a frame and Ẽ is its canonical dual frame, then

H1 = {f ∈ L2(Ω) : equation (3.3) holds} is a closed subspace of L2(Ω).

Proof. (a) Assume that f1, f2 ∈ H0 and a1, a2 ∈ C are given. Let h =

a1f1 + a2f2. Choose any ε > 0, and set Ri = RW

(

fi,
ε

2|ai|
)

for i = 1, 2. Define

RW (h, ε) = max{R1, R2}, and call this quantity R.

Choose any α ∈ Rd. For i = 1, 2 we have Ri ≤ R, so W (Ri, α) ⊂ W (R, α).

Therefore, since (3.2) holds,

dist
(

Mαfi, W (R, α)
)

≤ dist
(

Mαfi, W (Ri, α)
)

<
ε

2|ai|
, i = 1, 2.

Let PW denote the orthogonal projection onto W (R, α). Then

dist
(

Mαh, W (R, α)
)

= ‖(a1Mαf1 + a2Mαf2) − PW (a1Mαf1 + a2Mαf2)‖2

≤ |a1| ‖Mαf1 − PW (Mαf1)‖2 + |a2| ‖Mαf2 − PW (Mαf2)‖2

= |a1| dist
(

Mαf1, W (R, α)
)

+ |a2| dist
(

Mαf2, W (R, α)
)

< |a1|
ε

2|a1|
+ |a2|

ε

2|a2|
= ε.

Thus h ∈ H0, so H0 is a linear subspace of L2(Ω).

To show that H0 is closed, suppose that f lies in the closure of H0. Choose any

ε > 0. Then there exists h ∈ H0 such that ‖f − h‖2 < ε/3. Define RW (f, ε) =

RW (h, ε/3), and denote this quantity by R. Then for any α ∈ Rd, we have

dist
(

Mαf, W (R, α)
)

= ‖Mαf − PW (Mαf)‖2

≤ ‖Mαf − Mαh‖2 + ‖Mαh − PW (Mαh)‖2 + ‖PW (Mαh − Mαf)‖2

≤ ‖f − h‖2 + dist
(

Mαh, W (R, α)
)

+ ‖Mαh − Mαf‖2

<
ε

3
+

ε

3
+

ε

3
= ε.

Therefore f ∈ H0, so H0 is closed.

(b) Let A, B be frame bounds for E , so that 1
B , 1

A are frame bounds for Ẽ . Let

S denote the frame operator for E , so we have S−1(Mλgk) = g̃λ,k.

Assume that f1, f2 ∈ H1 and a1, a2 ∈ C are given. Let h = a1f1 + a2f2.

Choose any ε > 0, and set

Ri = R

(

fi,
εA1/2

2B1/2‖fi‖1/2 |ai|

)

, i = 1, 2,
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and set R = RS(h, ε) = max{R1, R2}.

Choose any α ∈ Rd. For i = 1, 2 we have Ri ≤ R, so Λk\QR(α) ⊂ Λk\QRi
(α).

Therefore, for i = 1, 2 we have

∥

∥

∥

∥

Mαfi −
N

∑

k=1

∑

λ∈Λk∩QR(α)

〈Mαfi, Mλgk〉 g̃λ,k

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

N
∑

k=1

∑

λ∈Λk\QR(α)

〈Mαfi, Mλgk〉 g̃λ,k

∥

∥

∥

∥

2

2

≤
1

A

N
∑

k=1

∑

λ∈Λk\QR(α)

|〈Mαfi, Mλgk〉|
2

≤
1

A

〈 N
∑

k=1

∑

λ∈Λk\QRi
(α)

〈Mαfi, Mλgk〉 g̃λ,k, SMαfi

〉

≤
1

A

∥

∥

∥

∥

N
∑

k=1

∑

λ∈Λk\QRi
(α)

〈Mαfi, Mλgk〉 g̃λ,k

∥

∥

∥

∥

2

‖SMαfi‖2

<
1

A

ε2A

4B‖fi‖2 |ai|2
B ‖Mαfi‖2 =

ε2

4|ai|2
.

Therefore,

∥

∥

∥

∥

Mαh −
N

∑

k=1

∑

λ∈Λk∩QRα)

〈Mαh, Mλgk〉 g̃λ,k

∥

∥

∥

∥

2

≤ |a1|

∥

∥

∥

∥

Mαf1 −
N

∑

k=1

∑

λ∈Λk∩QR(α)

〈Mαf1, Mλgk〉 g̃λ,k

∥

∥

∥

∥

2

+ |a2|

∥

∥

∥

∥

Mαf2 −
N

∑

k=1

∑

λ∈Λk∩QR(α)

〈Mαf2, Mλgk〉 g̃λ,k

∥

∥

∥

∥

2

< |a1|
ε

2|a1|
+ |a2|

ε

2|a2|
= ε.

Thus h ∈ H1, so H1 is a linear subspace of L2(Ω).

Next, to show that H1 is closed, suppose that f lies in the closure of H1. Choose

any ε > 0. Then there exists h ∈ H1 such that ‖f − h‖2 < (εA1/2)/(3B1/2). Set

RS(f, ε) = RS(h, ε/3), and denote this quantity by R. Then for any α ∈ Rd, we
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have
∥

∥

∥

∥

Mαf−
N

∑

k=1

∑

λ∈Λk∩QR(α)

〈Mαf, Mλgk〉 g̃λ,k

∥

∥

∥

∥

2

≤ ‖Mαf − Mαh‖2 +

∥

∥

∥

∥

Mαh −
N

∑

k=1

∑

λ∈Λk∩QR(α)

〈Mαh, Mλgk〉 g̃λ,k

∥

∥

∥

∥

2

+

∥

∥

∥

∥

N
∑

k=1

∑

λ∈Λk∩QR(α)

〈Mαf − Mαh, Mλgk〉 g̃λ,k

∥

∥

∥

∥

2

<
εA1/2

3B1/2
+

ε

3
+

(

1

A

N
∑

k=1

∑

λ∈Λk∩QR(α)

|〈Mαf − Mαh, Mλgk〉|
2

)1/2

≤
ε

3
+

ε

3
+

(B

A

)1/2

‖Mαf − Mαh‖2 < ε,

where the second inequality follows from (2.3) and the third inequality from the

definition of frame. Therefore f ∈ H1, so H1 is closed. �

3.3. The HAP for Frames of Windowed Exponentials. Now we establish

that every frame of windowed exponentials satisfies the Strong HAP with respect

to its canonical dual frame and the Weak HAP with respect to any dual frame.

Theorem 3.7. Let Ω be a bounded subset of Rd. Let g1, . . . , gN ∈ L2(Ω) and

Λ1, . . . , ΛN ⊂ Rd be given. Set Λ =
⋃N

k=1 Λk, and assume E =
⋃N

k=1 E(gk, Λk) is

a frame for L2(Ω).

(a) If Ẽ =
⋃N

k=1{g̃λ,k}λ∈Λk
is any dual frame, then E satisfies the Weak HAP

with respect to Ẽ .

(b) If Ẽ =
⋃N

k=1{g̃λ,k}λ∈Λk
is the canonical dual frame, then E satisfies the

Strong HAP with respect to Ẽ.

Proof. (a) Let A, B be frame bounds for E , and let C, D be frame bounds for Ẽ .

By Lemma 3.2, we have D+(Λ) < ∞, so by passing to subsequences if necessary

we may assume that each Λk is δk-uniformly separated for some δk > 0. Let

δ = min{δ1/2, . . . , δN/2}. Then any cube Qδ(x) can contain at most one point of

each Λk.

By Lemma 3.6(a), it suffices to show that equation (3.2) holds for a com-

plete subset of L2(Ω). We claim that (3.2) holds for the particular complete set

{Mωχ}ω∈Rd , where χ = χΩ. For simplicity, we will show below only that (3.2)
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holds for the particular function χ = M0χ, but entirely similar calculations show

that it holds for each function Mωχ.

Fix any ε > 0. By Proposition 2.12, we have each gk ∈ W (C, `2), so we can

find M ∈ N large enough that

∑

j∈Zd\QM (0)

sup
ξ∈Qδ(jδ)

|ĝk(ξ)| ≤
ε2

DN
, k = 1, . . . , N.

Set R = RS(χ, ε) = (2M + 1)δ.

Fix any α ∈ Rd. The frame expansion of Mαχ is

Mαχ =

N
∑

k=1

∑

λ∈Λk

〈Mαχ, Mλgk〉 g̃λ,k.

If λ /∈ QR(α), then there exists a unique j ∈ Zd\QM(0) such that λ−α ∈ Qδ(jδ).

Therefore,

∥

∥

∥

∥

Mαχ −
N

∑

k=1

∑

λ∈Λk∩QR(α)

〈Mαχ, Mλgk〉 g̃λ,k

∥

∥

∥

∥

2

2

(3.4)

=

∥

∥

∥

∥

N
∑

k=1

∑

λ∈Λk\QR(α)

〈Mαχ, Mλgk〉 g̃λ,k

∥

∥

∥

∥

2

2

≤ D

N
∑

k=1

∑

λ∈Λk\QR(α)

|〈Mαχ, Mλgk〉|
2

= D

N
∑

k=1

∑

λ∈Λk\QR(α)

|ĝk(α − λ)|2

≤ D

N
∑

k=1

∑

j∈Zd\QM (0)

sup
ξ∈Qδ(jδ)

|ĝk(ξ)|2

< DN
ε2

DN
= ε2,

where the first inequality follows from (2.3). Therefore equation (3.2) holds for

the function χ.

(b) The proof is identical, except we observe that the calculation in (3.4)

shows that equation (3.3) holds for the function χ, and hence it follows from

Lemma 3.6(b) that the Strong HAP is satisfied. �



DENSITY OF WINDOWED EXPONENTIALS 25

3.4. The Weak HAP for Schauder Bases of Windowed Exponentials. In

this section we show that at least some Schauder bases of windowed exponentials

possess the Weak HAP.

Theorem 3.8. Let Ω be a bounded subset of Rd. Let g1, . . . , gN ∈ L2(Ω) and

Λ1, . . . , ΛN ⊂ Rd be given. Set Λ =
⋃N

k=1 Λk. Let E =
⋃N

k=1 E(gk, Λk) be a

Schauder basis for L2(Ω) and let Ẽ =
⋃N

k=1{g̃λ,k}λ∈Λk
be its dual basis. If either:

(a) E possesses a lower frame bound, or

(b) ĝk ∈ L1(Rd) for k = 1, . . . , N ,

then E satisfies the Weak HAP (with respect to its dual basis).

Proof. (a) Suppose that E has a lower frame bound A. Then by Lemma 2.4,

the dual basis Ẽ is a Bessel sequence with Bessel bound D = 1/A. The proof then

proceeds almost identically to the proof of Theorem 3.7(a), so will be omitted.

(b) Since E is a bounded basis, its dual basis Ẽ is also a bounded basis. Hence

D = sup ‖g̃λ,k‖2 < ∞. We have D+(Λ) < ∞ by Lemma 3.1. Let δ be as in

the proof of Theorem 3.7(a). In light of Lemma 3.6(a), we need only show that

equation (3.2) holds for each of the functions Mωχ with ω ∈ Rd. For simplicity,

we present only the case ω = 0.

Fix any ε > 0. Since we have assumed ĝk ∈ L1(Rd), it follows from Proposi-

tion 2.12 that ĝk ∈ W (C, `1). Therefore, we can find M large enough that

∑

j∈Zd\QM (0)

sup
ξ∈Qδ(jδ)

|ĝk(ξ)| ≤
ε

DN
, k = 1, . . . , N.

Set R = RW (χ, ε) = (2M + 1)δ.

Fix now any α ∈ Rd. Since E is a Schauder basis with dual basis Ẽ , and since

Λk ∩ QR(α) is a finite set, we can write

∥

∥

∥

∥

Mαχ −
N

∑

k=1

∑

λ∈Λk∩QR(α)

〈Mαχ, Mλgk〉 g̃λ,k

∥

∥

∥

∥

2

=

∥

∥

∥

∥

N
∑

k=1

∑

λ∈Λk\QR(α)

〈Mαχ, Mλgk〉 g̃λ,k

∥

∥

∥

∥

2

,

with respect to some appropriate ordering of these series. If λ /∈ QR(α), then

there exists a unique j ∈ Zd \ QM (0) such that λ − α ∈ Qδ(jδ). Applying the



26 CHRISTOPHER HEIL AND GITTA KUTYNIOK

Triangle Inequality, we therefore compute that

dist(Mαχ, W (R, α)) ≤

∥

∥

∥

∥

Mαχ −
N

∑

k=1

∑

λ∈Λk∩QR(α)

〈Mαχ, Mλgk〉 g̃λ,k

∥

∥

∥

∥

2

=

∥

∥

∥

∥

N
∑

k=1

∑

λ∈Λk\QR(α)

〈Mαχ, Mλgk〉 g̃λ,k

∥

∥

∥

∥

2

≤
(

sup ‖g̃λ,k‖2

)

N
∑

k=1

∑

λ∈Λk\QR(α)

|〈Mαχ, Mλgk〉|

≤ D
N

∑

k=1

∑

λ∈Λk\QR(α)

|ĝk(α − λ)|

≤ D
N

∑

k=1

∑

j∈Zd\QM (0)

sup
ξ∈Qδ(jδ)

|ĝk(ξ)|

< DN
ε

DN
= ε.

�

3.5. The Comparison Theorem. We saw in Theorem 3.7 that all frames of

windowed exponentials possess the Strong HAP, and gave in Theorem 3.8 some

sufficient conditions under which a Schauder basis will possess the Weak HAP. We

do not have sufficient conditions under which an exact sequence will possess either

HAP, but we show in this section that if a systems of windowed exponentials is

merely exact and satisfies the Weak HAP, then certain density conditions must be

satisfied in comparison to any other Schauder basic sequence of windowed expo-

nentials. This Comparison Theorem is directly inspired by the double-projection

idea of Ramanathan and Steger [28].

Theorem 3.9 (Comparison Theorem). Let Ω be a bounded subset of Rd. Assume

that

(a) g1, . . . , gN ∈ L2(Ω) and Λ1, . . . , ΛN ⊂ Rd are such that

E =

N
⋃

k=1

E(gk, Λk)

is either

(i) a frame, or

(ii) an exact sequence which possesses the Weak HAP,
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(b) φ1, . . . , φM ∈ L2(Ω) and ∆1, . . . , ∆M ⊂ Rd are such that

Φ =

M
⋃

k=1

E(φk, ∆k)

is a Schauder basic sequence in L2(Ω).

Set Λ =
⋃N

k=1 Λk and ∆ =
⋃M

k=1 ∆k. Then

D−(∆) ≤ D−(Λ) and D+(∆) ≤ D+(Λ).

Proof. Let Ẽ =
⋃N

k=1{g̃λ,k}λ∈Λk
denote either the canonical dual frame of E

(if hypothesis (i) applies) or the sequence biorthogonal to E (if hypothesis (ii)

applies). In either case, by hypothesis or by Theorem 3.7, E possesses the Weak

HAP.

We are given that Φ is a Schauder basis for its closed span within L2(Ω). Let

Φ̃ =
⋃M

k=1{φ̃γ,k}γ∈∆k
denote the dual basis within that closed span.

Let W (h, α) be as in (3.1), and set

V (h, β) = span
{

Mαφk : α ∈ ∆k ∩ Qh(β), k = 1, . . . , M
}

.

Note that V (h, β) is finite-dimensional since ∆ has finite density by Lemma 3.1.

Fix any ε > 0. Applying the definition of the Weak HAP to the functions

f = φk , we see that there exists an R > 0 such that

(3.5) ∀α ∈ Rd, dist
(

Mαφk, W (R, α)
)

<
ε

D
, k = 1, . . . , M,

where

D = sup
{

‖φ̃γ,k‖ : γ ∈ ∆k, k = 1, . . . , M
}

.

Fix any h > 0 and β ∈ Rd. Let PV and PW denote the orthogonal projections

of L2(Ω) onto V = V (h, β) and W = W (R + h, β), respectively. Define T : V →

V by T = PV PW = PV PW PV . Note that T is self-adjoint and V is finite-

dimensional, so T has a finite, real trace.

We will estimate the trace of T . First note that every eigenvalue λ of T satisfies

|λ| ≤ ‖T‖ ≤ ‖PV ‖ ‖PW‖ = 1. Since the trace is the sum of the eigenvalues, this

provides us with an upper bound for the trace of T :

(3.6) trace(T ) ≤ rank(T ) ≤ dim(W ) = #
(

Λ ∩ QR+h(β)
)

.

For a lower estimate, note that {Mαφk : α ∈ ∆k ∩ Qh(β), k = 1, . . . , M} is a

basis for V . The dual basis in V is {PV φ̃α,k : α ∈ ∆k ∩ Qh(β), k = 1, . . . , M}.
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Therefore

trace(T ) =

M
∑

k=1

∑

α∈∆k∩Qh(β)

〈

T (Mαφk), PV φ̃α,k

〉

(3.7)

=

M
∑

k=1

∑

α∈∆k∩Qh(β)

〈

PW (Mαφk), PV φ̃α,k

〉

=

M
∑

k=1

∑

α∈∆k∩Qh(β)

(

〈

Mαφk, PV φ̃α,k

〉

+
〈

(PW − 1)(Mαφk), PV φ̃α,k

〉

)

.

However,

(3.8)
〈

Mαφk , PV φ̃α,k

〉

=
〈

PV (Mαφk), φ̃α,k

〉

=
〈

Mαφk, φ̃α,k

〉

= 1,

the last equality following from the biorthogonality of Φ and Φ̃. Additionally, if

α ∈ Qh(β) then we have QR(α) ⊂ QR+h(β), so W (R, α) ⊂ W (R + h, β) and

therefore
∣

∣

〈

(PW − 1)(Mαφk), PV φ̃α,k

〉∣

∣ ≤ ‖(PW − 1)(Mαφk)‖2 ‖PV φ̃α,k‖(3.9)

≤ dist
(

Mαφk, W (R + h, β)
)

‖φ̃α,k‖2

≤ dist
(

Mαφk, W (R, α)
)

D

≤
ε

D
D = ε.

Combining (3.7)–(3.9) yields the lower bound

(3.10) trace(T ) ≥
M
∑

k=1

∑

α∈∆k∩Qh(β)

(1 − ε) = (1 − ε) #
(

∆ ∩ Qh(β)
)

.

Finally, combining the upper estimate (3.6) with the lower estimate (3.10), we

see that

∀β ∈ Rd, ∀h > 0, #
(

Λ ∩ QR+h(β)
)

≥ (1 − ε) #
(

∆ ∩ Qh(β)
)

,

and so

D−(∆) = lim inf
h→∞

inf
β∈Rd

#
(

∆ ∩ Qh(β)
)

hd

≤
1

1 − ε
lim inf
h→∞

inf
β∈Rd

#
(

Λ ∩ QR+h(β)
)

(R + h)d

(R + h)d

hd
=

1

1 − ε
D−(Λ).
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Since ε is arbitrary, we conclude that D−(∆) ≤ D−(Λ). A similar calculation

shows that D+(∆) ≤ D+(Λ). �

3.6. Density and Bounds for Frames of Windowed Exponentials. Com-

bining our previous results on the HAP and the Comparison Theorem, we obtain

the following necessary density conditions.

Theorem 3.10. Let Ω be a bounded subset of Rd such that |∂Ω| = 0. Let

g1, . . . , gN ∈ L2(Ω) \ {0} and Λ1, . . . , ΛN ⊂ Rd be given. Set E =
⋃N

k=1 E(gk, Λk)

and Λ =
⋃N

k=1 Λk.

(a) If E is a frame for L2(Ω), then |Ω| ≤ D−(Λ) ≤ D+(Λ) < ∞.

(b) If E is a Riesz sequence in L2(Ω), then 0 ≤ D−(Λ) ≤ D+(Λ) ≤ |Ω|.

(c) If E is a Riesz basis for L2(Ω), then D−(Λ) = D+(Λ) = |Ω|.

Proof. (a) Suppose E is a frame for L2(Ω). By Theorem 3.7, we know that

E possesses the Strong HAP, and furthermore D+(Λ) < ∞ by Lemma 3.2. By

Lemma 2.10(a), given ε > 0 we know there exist functions φ1, . . . , φM ∈ L2(Ω)

and ∆1, . . . , ∆M ⊂ Rd such that Φ =
⋃M

k=1 E(φk, ∆k) is an orthonormal sequence

in L2(Ω), and furthermore, |Ω| − ε ≤ D±(∆) ≤ |Ω|, where ∆ =
⋃M

k=1 ∆k. Apply-

ing Theorem 3.9 to E and Φ, we conclude that |Ω| − ε ≤ D−(∆) ≤ D−(Λ). Since

ε is arbitrary, the result follows.

(b) Suppose that E is a Riesz sequence in L2(Ω). By Lemma 2.10(b), given

ε > 0 there exist functions φ1, . . . , φM ∈ L2(Ω) and ∆1, . . . , ∆M ⊂ Rd such that

Φ =
⋃M

k=1 E(φk , ∆k) is a frame for L2(Ω), and furthermore, |Ω| ≤ D±(∆) ≤

|Ω| + ε, where ∆ =
⋃M

k=1 ∆k. Since Φ possesses the Strong HAP, by applying

Theorem 3.9 to Φ and E , we conclude that D+(Λ) ≤ D+(∆) ≤ |Ω|+ ε. Since ε is

arbitrary, the result follows.

(c) Every Riesz basis is both a frame and a Riesz sequence, so the result follows

by combining statements (a) and (b). �

We now derive new relationships between the density, frame bounds, and norms

of the generators of a frame of windowed exponentials. In this result, the fact

that the elements Mλgk of
⋃N

k=1 E(gk, Λk) can have different norms requires us

to define a generalization of Beurling density where the norm of the element

associated to each point is taken into account.

Definition 3.11. Let Ω be a bounded subset of Rd. Then given g1, . . . , gN ∈

L2(Ω) and Λ1, . . . , ΛN ⊂ Rd, we define the weighted lower Beurling density with
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respect to g1, . . . , gN and Λ1, . . . , ΛN to be

D−
W (g1, . . . , gN ; Λ1, . . . , ΛN )

=

(

1

N

N
∑

k=1

‖gk‖
2
2

)−1

lim inf
h→∞

inf
β∈Rd

∑N
k=1 #

(

Λk ∩ Qh(β)
)

‖gk‖2
2

hd
.

We also make an analogous definition of D+
W (g1, . . . , gN ; Λ1, . . . , ΛN ).

Obviously, if ‖g1‖2 = · · · = ‖gN‖2, then D±
W (g1, . . . , gN ; Λ1, . . . , ΛN ) = D±(Λ),

where Λ =
⋃N

k=1 Λk.

Theorem 3.12. Let Ω be a bounded subset of Rd. Let g1, . . . , gN ∈ L2(Ω) and

Λ1, . . . , ΛN ⊂ Rd be such that E =
⋃N

k=1 E(gk, Λk) is a frame for L2(Ω) with

frame bounds A, B. Define Λ =
⋃N

k=1 Λk. Then the following statements hold.

(a) We have

A|Ω| ≤ D−
W (g1, . . . , gN ; Λ1, . . . , ΛN )

1

N

N
∑

k=1

‖gk‖
2
2

≤ D+
W (g1, . . . , gN ; Λ1, . . . , ΛN )

1

N

N
∑

k=1

‖gk‖
2
2 ≤ B|Ω|.

(b) If ‖g1‖2
2 = · · · = ‖gN‖2

2 = NE , then

A|Ω| ≤ D−(Λ)NE ≤ D+(Λ)NE ≤ B|Ω|.

(c) If ‖g1‖2
2 = · · · = ‖gN‖2

2 = NE and E is tight (A = B), then Λ has uniform

Beurling density

D±(Λ) =
A |Ω|

NE
.

Proof. (a) For ξ ∈ Rd, consider the function fξ(x) = MξχΩ(x) = e2πiξ·x χΩ(x).

By definition of frame,

(3.11) A ‖fξ‖
2
2 ≤

N
∑

k=1

∑

λ∈Λk

|〈fξ , Mλgk〉|
2 ≤ B ‖fξ‖

2
2.

Using the facts that ‖fξ‖2
2 = |Ω| and 〈fξ , Mλgk〉 = ĝk(ξ − λ), if we integrate (3.11)

over a cube Qh(x) we obtain

A|Ω|hd ≤
N

∑

k=1

∑

λ∈Λk

∫

Qh(x)

|ĝk(ξ − λ)|2 dξ ≤ B|Ω|hd, x ∈ Rd, h > 0.
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Choose any ε > 0 and fix r > 0 large enough that

∫

Rd\Qr(0)

|ĝk(ξ)|2 dξ < ε, k = 1, . . . , N.

Since D+(Λ) < ∞, as in the discussion following Definition 2.1, we can find a

constant K such that for all x ∈ Rd and all h large enough we have both

#
(

Λ ∩ Qh(x)
)

≤ K hd

and

#
(

Λ ∩ Qh+r(x) \ Qh−r(x)
)

≤ K
(

(h + r)d − (h − r)d
)

.

We now make the decomposition

N
∑

k=1

∑

λ∈Λk

∫

Qh(x)

|ĝk(ξ − λ)|2 dξ = I1(x, h) − I2(x, h) + I3(x, h) + I4(x, h),

where

I1(x, h) =

N
∑

k=1

∑

λ∈Λk∩Qh−r(x)

∫

Rd

|ĝk(ξ − λ)|2 dξ,

I2(x, h) =

N
∑

k=1

∑

λ∈Λk∩Qh−r(x)

∫

Rd\Qh(x)

|ĝk(ξ − λ)|2 dξ,

I3(x, h) =
N

∑

k=1

∑

λ∈Λk∩Qh+r(x)\Qh−r(x)

∫

Qh(x)

|ĝk(ξ − λ)|2 dξ,

I4(x, h) =
N

∑

k=1

∑

λ∈Λk\Qh+r(x)

∫

Qh(x)

|ĝk(ξ − λ)|2 dξ.

We estimate each of these in turn. First,

I1(x, h) =
N

∑

k=1

∑

λ∈Λk∩Qh−r(x)

‖ĝk‖
2
2 =

N
∑

k=1

‖gk‖
2
2 #

(

Λk ∩ Qh−r(x)
)

.

Trivially, −I2(x, h) ≤ 0 always.
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Every frame is bounded above in norm. In particular, ‖Mλgk‖2
2 ≤ B for all

λ ∈ Λk, k = 1, . . . , N . Therefore, for h large enough,

I3(x, h) ≤
N

∑

k=1

∑

λ∈Λk∩Qh+r(x)\Qh−r(x)

‖ĝk‖
2
2 ≤ B #

(

Λ ∩ Qh+r(x) \ Qh−r(x)
)

≤ BK
(

(h + r)d − (h − r)d
)

.

To estimate I4(x, h), note that if λ /∈ Qh+r(x) and ξ ∈ Qh(x) then ξ − λ ∈

Qh(x−λ) ⊂ Rd \Qr(0). Furthermore, each cube in {Qh(x−λ)}λ∈Λ can intersect

at most K hd of the others. Therefore, for h large enough,

I4(x, h) ≤
N

∑

k=1

∑

λ∈Λk\Qh+r(x)

∫

Qh(x−λ)

|ĝk(ξ)|2 dξ

≤
N

∑

k=1

Khd

∫

Rd\Qr(0)

|ĝk(ξ)|2 dξ ≤ NKhdε.

Combining the above estimates, we see that

A|Ω|hd ≤ I1(x, h) + 0 + I3(x, h) + I4(x, h)

≤

( N
∑

k=1

‖gk‖
2
2 #

(

Λk ∩ Qh−r(x)
)

)

+ BK
(

(h + r)d − (h − r)d
)

+ NKhdε.

Therefore

A|Ω| = lim inf
h→∞

inf
x∈Rd

A|Ω|hd

hd

≤ lim inf
h→∞

inf
x∈Rd

( N
∑

k=1

‖gk‖
2
2

#
(

Λk ∩ Qh−r(x)
)

(h − r)d

(h − r)d

hd

)

+

lim sup
h→∞

(

BK
(

(h + r)d − (h − r)d
)

hd
+

NKhdε

hd

)

= D−
W (g1, . . . , gN ; Λ1, . . . , ΛN )

1

N

N
∑

k=1

‖gk‖
2
2 + 0 + NKε.

Since ε is arbitrary, we conclude that

A|Ω| ≤ D−
W (g1, . . . , gN ; Λ1, . . . , ΛN )

1

N

N
∑

k=1

‖gk‖
2
2,
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and a similar calculation gives the upper estimate.

(b), (c) These are immediate consequences of part (a). �

For the case of a single generator, we obtain the following corollary.

Corollary 3.13. Let Ω be a bounded subset of Rd. Let g ∈ L2(Ω) and Λ ⊂ Rd

be such that E(g, Λ) is a frame for L2(Ω) with frame bounds A, B. Then the

following statements hold.

(a) A|Ω| ≤ D−(Λ) ‖g‖2
2 ≤ D+(Λ) ‖g‖2

2 ≤ B|Ω|.

(b) If E(g, Λ) is tight (A = B), then Λ has uniform Beurling density

D±(Λ) =
A |Ω|

‖g‖2
2

.

3.7. Density for Schauder Bases and Exact Systems of Windowed Ex-

ponentials. We now derive necessary conditions for the existence of Schauder

bases and exact systems of windowed exponentials, but these are weaker than the

results we obtained for frames. Sufficient conditions under which a Schauder basis

of windowed exponentials will possess the Weak HAP were given in Theorem 3.7,

but we do not have sufficient conditions for when an exact system will possess

either the Weak HAP. However, if it is the case that the Weak HAP is satisfied,

then we can prove the following necessary conditions.

Theorem 3.14. Let Ω be a bounded subset of Rd such that |∂Ω| = 0. Let

g1, . . . , gN ∈ L2(Ω) and Λ1, . . . , ΛN ⊂ Rd be given, and set E =
⋃N

k=1 E(gk, Λk)

and Λ =
⋃N

k=1 Λk.

(a) If E is an exact sequence in L2(Ω) which possesses the Weak HAP, then

|Ω| ≤ D−(Λ) ≤ D+(Λ) ≤ ∞.

(b) If E is a Schauder basic sequence in L2(Ω), then

0 ≤ D−(Λ) ≤ D+(Λ) ≤ |Ω|.

(c) If E is a Schauder basis for L2(Ω) which possesses the Weak HAP, then

D−(Λ) = D+(Λ) = |Ω|.

Proof. (a) Suppose that E is an exact sequence which possesses the Weak HAP.

Then by Lemma 2.10, given ε > 0 there exist functions φ1, . . . , φM ∈ L2(Ω) and

∆1, . . . , ∆M ⊂ Rd such that Φ =
⋃M

k=1 E(φk , ∆k) is an orthonormal sequence in

L2(Ω), and furthermore, |Ω| − ε ≤ D±(∆) ≤ |Ω|, where ∆ =
⋃M

k=1 ∆k. Applying

Theorem 3.9 to E and Φ, we conclude that |Ω| − ε ≤ D−(∆) ≤ D−(Λ). Since ε is

arbitrary, the result follows.
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(b) Suppose that E is a Schauder basic sequence in L2(Ω). Then by Lemma 2.10,

given ε > 0 there exist functions φ1, . . . , φM ∈ L2(Ω) and ∆1, . . . , ∆M ⊂ Rd such

that Φ =
⋃M

k=1 E(φk , ∆k) is a frame for L2(Ω), and furthermore, |Ω| ≤ D±(∆) ≤

|Ω| + ε, where ∆ =
⋃M

k=1 ∆k. Applying Theorem 3.9 to Φ and E , we conclude

that D−(Λ) ≤ D+(∆) ≤ |Ω| + ε. Since ε is arbitrary, the result follows.

(c) This follows by combining parts (a) and (b). �

We believe that Theorem 3.14(c) should apply to all Schauder bases of win-

dowed exponentials.

Conjecture 3.15. Let Ω be a bounded subset of Rd. If E =
⋃N

k=1 E(gk, Λk)

is a Schauder basis for L2(Ω), then E possesses the Weak HAP, and D−(Λ) =

D+(Λ) = |Ω|, where Λ =
⋃N

k=1 Λk.

The case for exact systems is less clear, so we close by asking whether analogous

results must hold for exact systems. Namely, if E =
⋃N

k=1 E(gk, Λk) is an exact

system in L2(Ω), must E possess the Weak or Strong HAP? Is it the case that

D−(Λ) = D+(Λ) = |Ω|?
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