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Abstract. In this paper, we first introduce the concept of an adaptive MRA (AMRA) structure
which is a variant of the classical MRA structure suited to the main goal of a fast flexible decomposi-
tion strategy adapted to the data at each decomposition level. We then study this novel methodology
for the general case of affine-like systems, and derive a Unitary Extension Principle (UEP) for filter
design. Finally, we apply our results to the directional representation system of shearlets. This
leads to a comprehensive theory for fast decomposition algorithms associated with shearlet systems
which encompasses tight shearlet frames with spatially compactly supported generators within such
an AMRA structure. Also shearlet-like systems associated with parabolic scaling and unimodular
shear matrices are studied within this framework.
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1. Introduction. Wavelets are nowadays indispensable as a multiscale encoding
system for a wide range of more theoretically to more practically oriented tasks, since
they provide optimal approximation rates for smooth 1-dimensional data exhibiting
singularities. The facts that they provide a unified treatment in both the continuous
as well as digital setting and that the digital setting admits a multiresolution analysis
leading to a fast spatial domain decomposition were essential for their success. It can
however be shown that wavelets – although perfectly suited for isotropic structures –
do not perform equally well when dealing with anisotropic phenomena.

This fact has motivated the development of various types of directional represen-
tation systems for 2-dimensional data that are capable of resolving edge- or curve-like
features which precisely separate smooth regions in a sparse way. Such systems include
wedgelets [14], bandlets [32], contourlets [12], and curvelets [5, 6, 7]. All multiscale
variants of such systems offer different advantages and disadvantages, however, neither
of them provides a unified treatment of the continuous and digital settings. Curvelets,
for instance, are known to yield tight frames but the digital curvelet transform is not
designed within the curvelet-framework and hence, in particular, is not covered by
the available theory [4]. We remind the reader that a system X is called a tight frame
for a Hilbert space H (in the literature sometimes also referred to as a Parseval frame
or a tight frame with bound one), if ‖f‖2 = ∑

g∈X |〈f, g〉|2 holds for all f ∈ H.

About three years ago, a novel representation system – so-called shearlets – has
been proposed [17, 29], which possesses the same favorable approximation and sparsity
properties as the other candidates (see [18, 27, 30]) of whom curvelets are perhaps
the most advanced ones. One main point in comparison with curvelets is the fact
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that angles are replaced by slopes when parameterizing directions which significantly
supports the treating of the digital setting. A second main point is that shearlets
fit within the general framework of affine-like systems, which provides an extensive
mathematical machinery. Thirdly, it is shown in [28] that shearlets – in addition to the
aforementioned favorable properties – provide a unified treatment for the continuous
and digital world similar to wavelets.

Recently, several researchers [19, 31, 33] have provided approaches to introduce an
MRA structure with accompanying fast spatial domain decomposition for shearlets.
This would establish shearlets as the directional representation system which provides
the full range of advantageous properties for 2D data which wavelets provide in 1D.
However, in the previous approaches, does either the MRA structure not lead to a tight
frame, infinitely many filters make an implementation difficult, or the MRA structure
is not faithful to the continuum transform. Approaches to extend the present shearlet
theory to higher dimensions were also already undertaken, however, for now, only
with continuous parameters [9].

In wavelet frame theory, the Unitary Extension Principle (UEP) introduced in [34]
has proven to be a highly useful methodology for constructing tight wavelet frames
with an associated MRA structure. An MRA structure is in fact crucial for fast
decomposition and reconstruction algorithms, which are key ingredients when devel-
oping efficient algorithms for wavelet frame based image restorations. This technique
was initially used for high and super resolution image reconstruction in [8], with the
UEP allowing to design wavelet frame systems adaptive to the problem. The ideas
were then further developed to more general image deblurring in [3, 11], blind deblur-
ring in [2], and image inpainting in [1, 16]. For more details on wavelet frames and
their applications in image restorations and analysis, we refer the interested reader
to the survey articles [13, 36]. One key for guaranteeing success of these applications
is the fact that tight wavelet frames can be shown to provide sparse approximations
for various classes of image models, in particular, through the redundancy of a frame.
Systems which provide even sparser approximations, yet are associated with an MRA
structure do presumably lead to more efficient algorithms for image restorations. This
motivates our adventures here.

In this paper we aim at providing an MRA structure for tight shearlet frames –
and in fact even for more general affine-like systems encompassing different shearlet
systems as special cases – which exhibits all the favorable properties of MRA struc-
tures for wavelets. We also allow the MRA structure to be more flexible in the sense
of adaptivity than ordinarily considered in the literature. We further prove sufficient
conditions for such an adaptive MRA in terms of a suited Unitary Extension Princi-
ple (UEP) along with a fast spatial domain decomposition as well as approximation
properties.

1.1. An Adaptive Multiresolution Analysis (AMRA). The framework of
a multiresolution analysis is a well-established methodology in wavelet theory for
deriving a decomposition of data into low- and high-frequency parts associated with a
scaling function and wavelets which leads to a fast spatial domain decomposition. This
point of view needs to be reconsidered when aiming for a decomposition of general
(homogeneous) affine-like systems, which we coin systems being a subset of unions of
affine systems

⋃

M∈Λ

{ψℓ
Mj;k : j ∈ Z, k ∈ Zd, ℓ = 1, . . . , r}, ψ1, . . . , ψr ∈ L2(R

d),
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where Λ is a finite set of d × d invertible integer matrices, and where, for a function
f : Rd → C and a d× d invertible real-valued matrix U , we used the notation

fU ;k := | detU |1/2f(U · −k), k ∈ Zd. (1.1)

Aiming for adaptivity of the decomposition procedure to different types of data
and for computational feasibility, we shall further develop the approach initiated in
[20, 22, 23, 24] by considering an ‘adaptive MRA’. For this, we claim the following
new paradigm for MRAs manifested in the following two requirements:

(R1) Nonhomogeneous systems. If one aims for a fast decomposition algorithm,
it is – as observed in [24] – sufficient to study the decomposition algorithm
using a generalized filter bank in the framework of nonhomogeneous affine-like
systems, i.e., considering a fixed coarsest decomposition level j, say 0, instead
of analyzing the limit j → −∞. As pointed out in [24], nonhomogeneous
affine-like systems do enable a canonical link between fast algorithms in the
discrete domain with affine systems in the continuum domain.

(R2) Adaptive Filter Selection. It is not necessary to use only one low-pass filter
in a filter bank obtained via the Unitary Extension Principle which does not
distinguish between low- and high-pass filters. The use of more than one
low-pass filters adaptively allows us to have an adaptive MRA structure to,
for instance, achieve directionality while maintaining a fast algorithm in the
discrete domain.

The main advantage of (R1) is to naturally connect theoretical continuum consid-
erations to the implementation requirements in the discrete setting, whereas (R2)
allows us to change the composition of the filters adaptively and nonstationarily at
each decomposition level. Therefore we coin this new paradigm for MRA an Adaptive
Multiresolution Analysis (AMRA).

To briefly illustrate the main idea of AMRA, let us discuss one step of the decom-
position algorithm. For this, let Mℓ, 1 6 ℓ 6 r be d × d invertible integer matrices,
and let aℓ, ℓ = 1, . . . , r, be finitely supported filters. Further, let s, 1 6 s 6 r be the
separator between low- and high-frequency part, and let aℓ, ℓ = 1, . . . , r be finitely
supported low-pass filters. We denote the given data by v which for convenience pur-
poses we now assume to lie in l2(Z

d). Notice that from the previous decomposition
step we presumably have many such low-frequency coefficients.

We then compute the next level of low-frequency coefficients by

vℓ = Taℓ,Mℓ
v, ℓ = 1, . . . , s,

and the next level of high-frequency coefficients by

vℓ = Taℓ,Mℓ
v, ℓ = s+ 1, . . . , r,

where for any d × d invertible integer matrix M and finitely supported sequence a :
Zd → C, the transition operator Ta,M : l2(Z

d) → l2(Z
d) are defined by

[Ta,Mv](n) :=
∑

k∈Zd

v(k)a(k −Mn).

The next step then continues with decomposing vℓ, ℓ = 1, . . . , s. The total number of
decomposition steps is J , hence finite.

The reader should notice the requirements (R1) and (R2) as opposed to a ‘classi-
cal MRA-decomposition algorithm’. After projecting onto a finite fine scale J , (R1)
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has only a finite number J of decomposition steps using an adaptive nonstationary
filter bank. The stability of an affine or affine-like system in the continuum setting
deals with the asymptotic behavior as the scale J → ∞ and is a fundamental issue in
wavelet analysis. Since we are dealing with tight frames, the stability issue becomes
trivial in this paper. (R2) can be seen by the fact that the separator between low-
and high-frequency part is somehow ‘loose’ in the sense that at each level a certain
condition needs to be satisfied (see Theorem 4.1 (i) below), which does not distin-
guish between those parts. This also implies that the structure of the subspaces the
data is projected onto is not as strict as for a classical MRA, but allows also non-
orthogonality and non-inclusiveness. Using s > 1 low-pass filters enables, for instance,
to capture the directional singularities in a data adaptively. We caution the reader
that though s is called the separator between low- and high-frequency parts, the filters
a1, . . . , as are indeed low-pass filters themselves (that is, âℓ(0) 6= 0, ℓ = 1, . . . , s), not
just symbolically called low-pass filters for superficial generality.

This decomposition algorithm is accompanied by a perfect reconstruction algo-
rithm, which appropriately applies subdivision operators, which, for any d×d invertible
integer matrix M and finitely supported sequence a : Zd → C, are defined by

[Sa,Mv](n) := | det(M)|
∑

k∈Zd

v(k)a(n−Mk).

Using a similar approach as in [22, 23], we shall prove that perfect reconstruction can
be achieved, if and only if, in each decomposition step a generalized version of the
Unitary Extension Principle [34] is satisfied by the filters aℓ, thereby also leading to a
generalized Unitary Extension Principle. The adaptive filter banks will be constructed
using the method developed in [20, 21]. Let us also mention that a simple observation
made in those papers will allow us to incorporate nonstationarity and adaptivity in
our algorithm by using more than one low-pass filters.

The generality of this framework will then allow us to firstly derive an AMRA
for shearlets, and secondly the anticipated Shearlet Unitary Extension Principle as a
corollary.

1.2. Related Work. Several research teams have previously designed MRA
decomposition algorithms based on shearlets: we mention the affine system-based
approach [19], the subdivision-based approach [31], and the approach based on sepa-
rability [33]. However, neither of these approaches did satisfy the desired properties
we posed in Subsection 1.1. Further non-MRA based approaches were undertaken,
for instance, in [15]. In our opinion, these pioneer efforts demonstrate real progress in
directional representation, but further progress is needed to derive an in-all-aspects
satisfactory comprehensive study of a fast spatial domain shearlet transform within an
appropriate MRA framework with careful attention to mathematical exactness, faith-
fulness to the continuum transform, and computational feasibility, ideally fulfilling all
our desiderata.

A particular credit deserves the work in [31], in which the adaptivity ideas were
already lurking. The main difference to this paper is the additional freedom pro-
vided by the AMRA structure. We also point out that another completely different
approach is recently proposed in [B. Han, Nonhomogeneous wavelet systems in high
dimensions, arXiv: 1002.2421, 2010], which is the high-dimensional generalization of
[24], to achieve adaptivity and directionality in high dimensions with a fast algorithm.

1.3. Contribution of this Paper. The contribution of this paper is three-fold.
First, we introduce the concept of an adaptive MRA (AMRA) structure suited to
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the main goal of a fast flexible decomposition strategy. Secondly, we study this novel
methodology for the general case of affine-like systems. And thirdly, we present a
comprehensive theory for shearlet systems which encompasses tight shearlet frames
with spatially compactly supported generators within such an AMRA structure along
with a fast decomposition strategy.

We wish to mention that, in fact, these results are susceptible of extensive gen-
eralizations and extensions most of which are far beyond the scope of this paper and
will be studied in future work. Examples are the bi-frame case as well as AMRA
structures for shearlet systems in higher dimensions.

1.4. Contents. In Section 2, we introduce the notation that we employ for gen-
eral affine-like systems, state the fast decomposition algorithm based on an AMRA,
and prove the Unitary Extension Principle (UEP) for this situation. Section 3 is con-
cerned with the relation to the continuum setting, i.e., with developing characterizing
equations and approximation properties for the functions associated with an ARMA
and a general method for constructing associated filters. This general methodology
is then applied to the situation of shearlet systems in Section 4 to derive a Unitary
Extension Principle for such systems.

2. An Adaptive Multiresolution Analysis for General Affine-Like Sys-
tems. As already elaborated upon in the introduction, one main idea of an AMRA
is to be able to design each decomposition step adaptively, for instance, dependent
on the previous decomposition. To follow this philosophy, in Subsection 2.1, we will
firstly analyze one single decomposition step, which might occur at any stage of the
general decomposition algorithm. Secondly, in Subsection 2.2, we will then present
the large picture in the sense of the complete decomposition procedure.

Transition and subdivision operators are the key operators of decomposition and
reconstruction, and our proofs will frequently require their Fourier domain versions.
Hence, let us start by stating the following lemma.

Lemma 2.1. Let M be a d × d invertible integer matrix and a : Zd → C be a
finitely supported sequence. Then

Ŝa,Mv(ξ) = | det(M)|v̂(MTξ)â(ξ) (2.1)

and

T̂a,Mv(MTξ) = | det(M)|−1
∑

ω∈ΩM

v̂(ξ + 2πω)â(ξ + 2πω), (2.2)

where

â(ξ) :=
∑

k∈Zd

a(k)e−ik·ξ (2.3)

and

ΩM := [(MT)−1Zd] ∩ [0, 1)d. (2.4)

Proof. The two identities in (2.1) and (2.2) are well known in wavelet analysis.
For the convenience of the reader, we will prove (2.1), and mention that (2.2) can be
easily proved similarly.
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We start by denoting û(ξ) := v̂(ξ)â(ξ). By the definition of Fourier series in
(2.3) and the property of convolution, it can be easily checked that, for each n ∈ Zd,
we have u(n) =

∑
k∈Zd v(k)a(k − n). Therefore, by the definition of the transition

operator Ta,M, we have [Ta,Mv](n) = u(Mn) for all n ∈ Zd. Hence, we deduce that

T̂a,Mv(MTξ) =
∑

n∈Zd

[Ta,Mv](n)e−in·MTξ =
∑

n∈Zd

u(Mn)e−iMn·ξ. (2.5)

On the other hand, we have

∑

ω∈ΩM

û(ξ + 2πω) =
∑

k∈Zd

∑

ω∈ΩM

u(k)e−ik·(ξ+2πω) =
∑

k∈Zd

u(k)e−ik·ξ
∑

ω∈ΩM

e−ik·2πω.

Using the basic fact that
∑

ω∈ΩM
e−ik·2πω = | det(M)| if k ∈ MZd, and = 0 if k ∈

Zd\[MZd], we conclude from the above identity that

∑

ω∈ΩM

û(ξ + 2πω) = | det(M)|
∑

k∈MZd

u(k)e−ik·ξ = | det(M)|
∑

n∈Zd

u(Mn)e−iMn·ξ.

Combining the above identity with (2.5) and noting that û(ξ) = v̂(ξ)â(ξ), we see that
(2.1) holds.

2.1. A Unitary Extension Principle for One Decomposition Step. Let
now v ∈ l2(Z

d) be some set of data. This could be the initial data, but also data
after some levels of decomposition then on a renormalized grid. We assume that we
are given a sequence of arbitrary d× d matrices Mℓ, 1 6 ℓ 6 r, and finitely supported
filters aℓ, ℓ = 1, . . . , r according to which the data shall be decomposed. Our first
result is a Unitary Extension Principle (UEP) for this situation, which characterizes
those matrices and filters, which allow perfect reconstruction from the decomposed
data using subdivision.

Theorem 2.2. Let Mℓ, 1 6 ℓ 6 r be d × d invertible integer matrices, and let
aℓ, ℓ = 1, . . . , r, be finitely supported filters. Then the following perfect reconstruction
property holds:

r∑

ℓ=1

Saℓ,Mℓ
Taℓ,Mℓ

v = v, ∀ v ∈ l2(Z
d), (2.6)

if and only if, for any ω ∈ Ω =
⋃r

ℓ=1 ΩMℓ
, where ΩMℓ

:= [(MT

ℓ )
−1Zd] ∩ [0, 1)d,

∑

ℓ∈{16n6r : ω∈ΩMn}
âℓ(ξ)âℓ(ξ + 2πω) = δ(ω). (2.7)

Proof. First, notice that, by (2.1) and (2.2), for all v ∈ l2(Z
d), (2.6) is equivalent

to

v̂(ξ) =

r∑

ℓ=1

̂[Saℓ,Mℓ
Taℓ,Mℓ

v](ξ) =

r∑

ℓ=1

| det(Mℓ)|T̂aℓ,Mℓ
v(MT

ℓ ξ)âℓ(ξ)

=

r∑

ℓ=1

∑

ω∈ΩMℓ

v̂(ξ + 2πω)âℓ(ξ)âℓ(ξ + 2πω).
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By the definition of ΩMℓ
in (2.4), we can rewrite the previous equation as

v̂(ξ) =
∑

ω∈Ω

∑

ℓ∈{16n6r : ω∈ΩMn}
v̂(ξ + 2πω)âℓ(ξ)âℓ(ξ + 2πω) for all v ∈ l2(Z

d). (2.8)

Since (2.7) is equivalent to (2.8), this proves (2.7) ⇒ (2.6).
We now assume that (2.6) holds, hence (2.8) holds. We aim to prove that this

implies (2.8). For this, we let Bǫ(ξ0) denote as usual an open ball around ξ0 with
radius ǫ. We now first observe that for any arbitrarily chosen but then fixed ω0 ∈ Ω
and ξ0 ∈ Rd, there exists some v ∈ l2(Z

d) and ǫ > 0 such that
(a) v̂(ξ + 2πω0) = 1 for all ξ ∈ Bǫ(ξ0),
(b) v̂(ξ + 2πω) = 0 for all ξ ∈ Bǫ(ξ0), ω ∈ Ω \ {ω0},
(c) supp v̂ ⊆ 2πω0 +B2ǫ(ξ0),

simply since Ω is discrete. Now we can conclude that (2.8) implies

v̂(ξ) =
∑

ℓ∈{16n6r : ω0∈ΩMn}
âℓ(ξ)âℓ(ξ + 2πω0) for all ξ ∈ Bǫ(ξ0).

Hence again by (a) – (c), (2.8) follows for all ξ ∈ Bǫ(ξ0). Since ω0 ∈ Ω and ξ0 ∈ Rd

are arbitrarily chosen, (2.8) follows.
Motivated by a simple fact observed in [20, 21], we now consider a special case of

Theorem 2.2 by using a common sampling lattice. The first part of the next result
follows immediately from Theorem 2.2 as a special case. It significantly simplifies the
condition on the filters imposed by the UEP, provided the situation allows to always
use the same sampling lattice. Condition (iii) is the spatial domain expression for
the UEP condition (ii), which illustrates the filter design problem in spatial domain.
Certainly, this condition could also be stated in the general situation of Theorem 2.2.
We however decide to omit this, since the content would be clouded by very technical
details.

Corollary 2.3. Let Mℓ, 1 6 ℓ 6 r be d×d invertible integer matrices satisfying
MℓZ

d = MZd for all 1 6 ℓ 6 r for some matrix M, and let aℓ, ℓ = 1, . . . , r, be finitely
supported filters. Then the following conditions are equivalent:

(i) for all v ∈ l2(Z
d),

r∑

ℓ=1

Saℓ,Mℓ
Taℓ,Mℓ

v = v;

(ii) for any ω ∈ ΩM = [(MT)−1Zd] ∩ [0, 1)d,

r∑

ℓ=1

âℓ(ξ)âℓ(ξ + 2πω) = δ(ω);

(iii) for all k, γ ∈ Zd,

r∑

ℓ=1

∑

n∈Zd

aℓ(k +Mn+ γ)aℓ(Mn+ γ) = | det(M)|−1δ(k).

Proof. By our assumption MℓZ
d = MZd and the definition of ΩM in (2.4), we have

ΩMℓ
= ΩM for all ℓ = 1, . . . , r. The equivalence of (i) and (ii) now follows directly

from Theorem 2.2.



8 B. HAN, G. KUTYNIOK, AND Z. SHEN

We next prove equivalence between (ii) and (iii). By using the definition of âℓ,
condition (ii) is equivalent to

δ(ω) =

r∑

ℓ=1

∑

k∈Zd

aℓ(k)e
ik·ξ

∑

n∈Zd

aℓ(n)e
−in·(ξ+2πω)

=
r∑

ℓ=1

∑

k,n∈Zd

aℓ(k)aℓ(n)e
i(k−n)·ξe−in·2πω.

(2.9)

Next we denote ΓM := (M[0, 1)d)∩Zd. Using the trivial relation Zd = ΓM +MZd and
replacing n in (2.9) by Mn+ γ, we can rewrite (2.9) as

δ(ω) =

r∑

ℓ=1

∑

γ∈ΓM

∑

k,n∈Zd

aℓ(k)aℓ(Mn+ γ)ei(k−Mn−γ)·ξe−i(Mn+γ)2πω

=

r∑

ℓ=1

∑

γ∈ΓM

∑

k,n∈Zd

aℓ(k+Mn+ γ)aℓ(Mn+ γ)eik·ξe−iγ·2πω.

Considering this equation in matrix form

(
e−iγ·2πω)

ω∈ΩM,γ∈ΓM




r∑

ℓ=1

∑

k,n∈Zd

aℓ(k +Mn+ γ)aℓ(Mn+ γ)eik·ξ




γ∈ΓM

= (δ(ω))ω∈ΩM
,

we can conclude by taking the inverse that

( r∑

ℓ=1

∑

k,n∈Zd

aℓ(k+Mn+ γ)aℓ(Mn+ γ)eik·ξ
)
γ∈ΓM

= | det(M)|−1
(
eiγ·2πω

)
ω∈ΩM,γ∈ΓM

(δ(ω))ω∈ΩM

= | det(M)|−1(1, . . . , 1)T.

Thus (ii) is equivalent to the equation

r∑

ℓ=1

∑

k,n∈Zd

aℓ(k+Mn+ γ)aℓ(Mn+ γ)eik·ξ = | det(M)|−1 for all γ ∈ Zd,

which in turn is equivalent to (iii).
This corollary implies, by defining the equivalence relation∼ on the d×d invertible

integer matrices by M1 ∼ M2 ⇐⇒ M1Z
d = M2Z

d, that only one representative of
each involved class needs to satisfy (2.7). In other words, only the generated lattice
M1Z

d does matter in the condition equivalent to perfect reconstruction. Inside each
class we have very much freedom to choose the dilation matrices as necessary by the
application. We refer the reader to [20, 21] for the application of this observation on
the construction of wavelets.

2.2. Fast Decomposition Algorithm. In the previous subsection, we derived
characterizing conditions for sequences of arbitrary d× d matrices Mℓ, 1 6 ℓ 6 r, and
finitely supported filters aℓ, ℓ = 1, . . . , r which allow perfect reconstruction in each
level of an AMRA. This now enables us to present a general adaptive decomposition
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algorithm, where the matrices and filters in each level can be chosen according to
Theorem 2.2. The adaptivity of our algorithm is essentially built on the multilevel
decomposition and reconstruction in a nonstationary fashion. Though multilevel and
nonstationarity will unavoidably make the presentation and notation of our algorithm
more challenging, it worths our effort to present explicitly our algorithm using tree
structure. This also allows the reader and us to follow our description here for a
practical implementation of our algorithm in a near future.

We first require some notation to carefully keep track of the decomposition steps
and positions in the generated tree structure by suitable indexes. While reading the
definitions, we recommend the reader to also take a look at Figure 2.1, which illus-
trates the indexing of the decomposition. To reflect the multilevel and nonstationarity
following the commonly used tree structure in computer science, we shall use vectors
(β1, . . . , βJ ) assigned to matrices, filters, and data, where each entry βj indicates
whether this object is related to the computation of scale j or a coarser scale, and if
yes, whether the data at scale j to reach this object was generated by a low-pass or
high-pass filter.

Let us now be more specific. Recall that N0 := N ∪ {0}. The original data is
assigned the index 0 := (0, . . . , 0) ∈ NJ

0 , and we set LL
0 = {0} = {(0, . . . , 0)}. For

the indexing of the low-pass filters, we define IL
0
= {1, . . . , s0} and, for the high-pass

filters, IH
0

= {s0 + 1, . . . , r0}, where s0 6 r0 and r0 is a positive integer. In that
sense s0 partitions the filters into low- and high-frequency filters. If s0 = r0, then
IH
0

= ∅. Thus, matrices and filters in the first step of the decomposition are labeled
by (ℓ, 0, . . . , 0) ∈ NJ

0 , ℓ ∈ IL
0

for the low-frequency objects, and (ℓ, 0, . . . , 0) ∈ NJ
0 ,

ℓ ∈ IH
0

for the high-frequency objects. For our convenience, we further introduce the
notation

LL
1 = LL

1,0 = {(ℓ, 0, . . . , 0) ∈ NJ
0 : ℓ ∈ IL

0
}

and

LH
1 = LH

1,0 = {(ℓ, 0, . . . , 0) ∈ NJ
0 : ℓ ∈ IH

0
}

to denote the indices for the low- and high-frequency objects in the first decomposition
layer. The associated filters aβ, β ∈ LL

1 ∪ LH
1 for the first decomposition step are

required to satisfy condition (ii) in Theorem 2.2, i.e.,

∑

β∈{γ∈LL
1 ∪LH

1 : ω∈ΩMγ }
âβ(ξ)âβ(ξ + 2πω) = δ(ω), ω ∈ Ω0 = Ω(0,...,0),

where Mγ are d × d invertible integer matrices, ΩMγ
:= [(MT

γ )
−1Zd] ∩ [0, 1)d, and

Ω(0,...,0) := ∪γ∈LL
1 ∪LH

1
ΩMγ

.
The matrices and filters which are used in the jth step will then be labeled as

follows. We first assume that in the (j−1)th step the sets LL
j−1 and LH

j−1 were already

constructed. Then, for some β = (β1, . . . , βj−1, 0, . . . , 0) ∈ LL
j−1, we define

IL
β = {1, . . . , sβ} and IH

β = {sβ + 1, . . . , rβ} with 1 6 sβ 6 rβ ,

as single labels in the new decomposition layer for the matrices and filters. To take
the whole tree structure into account, we now define the set of new low-pass related
indices arising from β = (β1, . . . , βj−1, 0, . . . , 0) by

LL
j,β = {(β1, . . . , βj−1, ℓ, 0, . . . , 0) ∈ NJ

0 : ℓ ∈ IL
β }
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and the same for the set of all high-pass related indices,

LH
j,β = {(β1, . . . , βj−1, ℓ, 0, . . . , 0) ∈ NJ

0 : ℓ ∈ IH
β }.

We further set

LL
j = ∪β∈LL

j−1
LL
j,β and LH

j = ∪β∈LL
j−1

LH
j,β ,

the complete set of low-pass and high-pass indices in step j, respectively. Now let
α ∈ LL

j−1. To ensure perfect reconstruction, according to Theorem 2.2, the associated

filters aβ, β ∈ LL
j,α ∪ LH

j,α must satisfy

∑

β∈{γ∈LL
j,α∪LH

j,α : ω∈ΩMγ }
âβ(ξ)âβ(ξ + 2πω) = δ(ω), ω ∈ Ωα,

where Ωα := ∪γ∈LL
j,α∪LH

j,α
ΩMγ

.

Next we describe the general multi-level decomposition algorithm explicitly using
the indexing that we just introduced. For illustrative purposes, before presenting the
complete algorithm, we display the first decomposition step as well as one part of the
second decomposition step in Figure 2.1.

v0

{vβ = Taβ,Mβ
v0 : β ∈ LH

1,0 = {(ℓ, 0, . . . , 0) : ℓ ∈ IH
0

}

v(s0+1,0,...,0) v(s0+2,0,...,0) v(r0,0,...,0)

{vβ = Taβ,Mβ
v0 : β ∈ LL

1,0 = {(ℓ, 0, . . . , 0) : ℓ ∈ IL
0

}

v(1,0,...,0) v(2,0,...,0) v(s0,0,...,0)

{vβ = Taβ,Mβ
v(2,0,...,0) : β ∈ LH

2,(2,0,...,0)
= {(2, ℓ, 0, . . . , 0) : ℓ ∈ IH

(2,0,...,0)
}

v(2,s(2,0,...,0)+1,0,...,0) v(2,s(2,0,...,0)+2,0,...,0) v(2,r(2,0,...,0),0,...,0)

{vβ = Taβ,Mβ
v(2,0,...,0) : β ∈ LL

2,(2,0,...,0)
= {(2, ℓ, 0, . . . , 0) : ℓ ∈ IL

(2,0,...,0)
}

v(2,1,0,...,0) v(2,2,0,...,0) v(2,s(2,0,...,0),0,...,0)

Fig. 2.1. The decomposition structure of (FAD) illustrated through the first complete step
and the second step shown exemplarily through the decomposition of v(2,0,...,0). The low-frequency
components, which will be processed further, are gray-shaded.

In Figure 2.2, we now describe the general multi-level decomposition algorithm
explicitly. This decomposition can be implemented as the usual fast wavelet transform
with a tree structure. We remind the reader of the introduced notion of transition
and subdivision in Subsection 1.1.

The fact that the filters are chosen to be perfect reconstruction filters allows us to
reconstruct the data by application of appropriate subdivision operators as displayed
in Figure 2.3.

3. Relation with Continuum Setting. We next intend to relate the ‘digital
conditions’ on the filters to ‘continuum conditions’ for associated function systems, in
particular, frame systems.
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FAD (Fast Adaptive Decomposition)

Parameters:
• Data v ∈ l2(Z

d).
• Number of iterations J ∈ N.
• Set of all indices L :=

⋃J
j=1 LL

j ∪⋃J
j=1 LH

j .

• Number of decompositions rβ for each position β ∈ LL
j−1, j = 1, . . . , J .

• Separators between low- and high-pass parts sβ 6 rβ for each position
β ∈ LL

j−1, j = 1, . . . , J .

• Sequence of finitely supported filters aβ ∈ l2(Z
2), β ∈ L, satisfying the

conditions in Theorem 2.2.
• Sequence of matrices (Mβ)β∈L satisfying the conditions in Theorem 2.2.

Algorithm:
1) Set v0 = v(0,...,0) = v.
2) For j = 1, . . . , J do
3) For β ∈ LL

j,α, α ∈ LL
j−1 do

4) Set vβ = Taβ ,Mβ
vα.

5) end;
6) For β ∈ LH

j,α, α ∈ LL
j−1 do

7) Set wβ = Taβ ,Mβ
vα.

8) end;
9) end;

Output:
• Low-pass coefficients vβ , where β ∈ LL

J .

• High-pass coefficients wβ , where β ∈ ⋃J
j=1 LH

j .

Fig. 2.2. The FAD Algorithm for a fast adaptive decomposition using affine-like systems.

3.1. Characterization Equations. As before in Theorem 2.2, we only consider
one level. The conditions we will derive then need to be satisfied for each step in the
iteration, and the choice of a non-stationary or stationary scheme is left to the user.

For a function f : Rd → C and an invertible d × d matrix U , we shall use the
notation as in (1.1).

We can now formulate the condition on prefect reconstruction in terms of a con-
dition in the function setting. Notice that here we again consider the most general
situation of Theorem 2.2 as opposed to Corollary 2.3.

Theorem 3.1. Let Mℓ, 0 6 ℓ 6 r be d × d invertible integer matrices, and let
aℓ, ℓ = 1, . . . , r, be finitely supported filters. Let φ be a nontrivial compactly supported
function in L2(R

d). Then the following conditions are equivalent:
(i) For all v ∈ l2(Z

d),

r∑

ℓ=1

Saℓ,Mℓ
Taℓ,Mℓ

v = v;

(ii) For each f, g ∈ L2(R
d),

∑

k∈Zd

〈f, φM0;k〉〈φM0;k, g〉 =
r∑

ℓ=1

∑

k∈Zd

〈f, ψℓ
M

−1
ℓ

M0;k
〉〈ψℓ

M
−1
ℓ

M0;k
, g〉, (3.1)
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FAR (Fast Adaptive Reconstruction)

Parameters:
• Number of iterations J ∈ N.
• Set of all indices L :=

⋃J
j=1 LL

j ∪⋃J
j=1 LH

j .

• Number of reconstructions rβ for each position β ∈ LL
j−1, j = 1, . . . , J .

• Separators between low- and high-pass parts sβ 6 rβ for each position
β ∈ LL

j−1, j = 1, . . . , J .

• Low-pass coefficients vβ , where β ∈ LL
J .

• High-pass coefficients wβ , where β ∈ ⋃J
j=1 LH

j .

• Sequence of finitely supported filters aβ ∈ l2(Z
2), β ∈ L, satisfying the

conditions in Theorem 2.2.
• Sequence of matrices (Mβ)β∈L satisfying the conditions in Theorem 2.2.

Recursive Algorithm:
1) For j = J − 1, . . . , 0 do
2) For α ∈ LL

j do
3) Set vα =

∑
β∈LL

j+1,α
Saβ ,Mβ

vβ +
∑

γ∈LH
j+1,α

Saγ ,Mγ
wγ .

4) end;
5) end;

Output:
• Data v0 = v(0,...,0) ∈ l2(Z

d).

Fig. 2.3. The FAR Algorithm for a fast adaptive reconstruction using affine-like systems.

where φM0;k is defined as in (1.1) and ψ1, . . . , ψr are defined by ψ̂ℓ(MT

ℓ ξ) :=

âℓ(ξ)φ̂(ξ), that is,

ψℓ := | det(Mℓ)|
∑

k∈Zd

aℓ(k)φ(Mℓ · −k).

Proof. We first recall that (i) is equivalent to (2.7) by Theorem 2.2. The strategy
will now be to show that (ii) is equivalent to (2.7).

For f, g, η ∈ L2(R
d) and an invertible real-valued matrix U , we have

〈f, ηU ;k〉 = 〈| det(U)|−1/2f(U−1·), η(· − k)〉 = 〈fU−1;0, ηId;k〉. (3.2)

It is now easy to see that (3.1) holds if and only if it holds for M0 = Id. So, we
assume that M0 = Id in the following proof. Using the Fourier-based approach (e.g.
[24, Lemma 3]) and Parseval identity, we have the following known identity:

∑

k∈Zd

〈f, ηId;k〉〈ηId;k, g〉 = (2π)d
∫

Rd

∑

k∈Zd

f̂(ξ)ĝ(ξ + 2πk) η̂(ξ)η̂(ξ + 2πk)dξ (3.3)

for all f, g, η ∈ L2(R
d). In particular, (3.3) holds if η = φ. Moreover, applying (3.2)



ADAPTIVE MRA STRUCTURES AND SHEARLET SYSTEMS 13

and (3.3), we have

∑

k∈Zd

〈f, ψℓ
M

−1
ℓ

;k
〉〈ψℓ

M
−1
ℓ

;k
, g〉 =

∑

k∈Zd

〈fMℓ;0, ψ
ℓ
Id;k

〉〈ψℓ
Id;k

, gMℓ;0〉

= (2π)d
∫

Rd

∑

k∈Zd

f̂Mℓ;0(ξ)ĝMℓ;0(ξ + 2πk) ψ̂ℓ(ξ)ψ̂ℓ(ξ + 2πk)dξ

= (2π)d| det(Mℓ)|−1

∫

Rd

∑

k∈Zd

f̂((MT

ℓ )
−1ξ)ĝ((M

T

ℓ )
−1(ξ + 2πk))ψ̂ℓ(ξ)ψ̂ℓ(ξ + 2πk)dξ.

Changing from the variable ξ to Mℓξ in the last identity and summing over ℓ, we end
up with

r∑

ℓ=1

∑

k∈Zd

〈f, ψℓ
M

−1
ℓ

;k
〉〈ψℓ

M
−1
ℓ

;k
, g〉

= (2π)d
∫

Rd

r∑

ℓ=1

∑

k∈Zd

f̂(ξ)ĝ(ξ + 2π(MT

ℓ )
−1k) ψ̂ℓ(MT

ℓ ξ)ψ̂
ℓ(MT

ℓ ξ + 2πk)dξ.

(3.4)

Since ψ̂ℓ(MT

ℓ ξ) = âℓ(ξ)φ̂(ξ), we have

ψ̂ℓ(MT

ℓ ξ)ψ̂
ℓ(MT

ℓ ξ + 2πk) = âℓ(ξ)âℓ(ξ + 2π(MT

ℓ )
−1

k)φ̂(ξ)φ̂(ξ + 2π(MT

ℓ )
−1

k).

Note that Zd is the disjoint union of MT

ℓ ω+M
T

ℓ Z
d for every ω ∈ ΩMℓ

. Now we deduce
that (3.4) becomes

r∑

ℓ=1

∑

k∈Zd

〈f, ψℓ
M

−1
ℓ

;k
〉〈ψℓ

M
−1
ℓ

;k
, g〉

= (2π)d
∫

Rd

r∑

ℓ=1

∑

ω∈ΩMℓ

∑

k∈Zd

f̂(ξ)ĝ(ξ + 2πω + 2πk) âℓ(ξ)âℓ(ξ + 2πω)

· φ̂(ξ)φ̂(ξ + 2πω + 2πk)dξ

= (2π)d
∫

Rd

∑

ω∈Ω

∑

k∈Zd

f̂(ξ)ĝ(ξ + 2πω + 2πk) φ̂(ξ)φ̂(ξ + 2πω + 2πk)

·
∑

ℓ∈{16n6r : ω∈ΩMn}
âℓ(ξ)âℓ(ξ + 2πω)dξ,

where Ω := ∪r
ℓ=1ΩMℓ

as in Theorem 2.2. Hence, (3.1) is equivalent to
∫

Rd

∑

k∈Zd

f̂(ξ)ĝ(ξ + 2πk) φ̂(ξ)φ̂(ξ + 2πk)dξ

=

∫

Rd

∑

ω∈Ω

∑

k∈Zd

f̂(ξ)ĝ(ξ + 2πω + 2πk) φ̂(ξ)φ̂(ξ + 2πω + 2πk)

·
∑

ℓ∈{16n6r : ω∈ΩMn}
âℓ(ξ)âℓ(ξ + 2πω)dξ.

(3.5)

Since (2.7) holds, it is obvious that the above identity in (3.5) holds and therefore,
(iii) holds.
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Conversely, if (ii) holds, then (3.5) holds. Now we use a similar argument as
in [24, Lemma 5] to prove that this implies condition (ii). For this, we note that
Ω + Zd := {ω + k : ω ∈ Ω, k ∈ Zd} is a discrete set without any accumulation
point. For any arbitrarily chosen but then fixed ω0 ∈ Ω and ξ0 ∈ Rd, we can take any
functions f, g ∈ L2(R

d) such that the support of f̂ is contained inside Bǫ(ξ0) and the
support of ĝ is contained inside Bǫ(ξ + 2πω0). As long as ǫ is small enough, it is not
difficult to see that

f̂(ξ)ĝ(ξ + 2πk) = 0 for all k ∈ [Ω + Zd]\{ω0}.

Now it is easy to see that (3.5) becomes

δ(ω0)

∫

Rd

f̂(ξ)ĝ(ξ)φ̂(ξ)φ̂(ξ)dξ

=

∫

Rd

f̂(ξ)ĝ(ξ + 2πω0)φ̂(ξ)φ̂(ξ + 2πω0)
∑

ℓ∈{16n6r : ω∈ΩMn}
âℓ(ξ)âℓ(ξ + 2πω0)dξ.

Note that φ̂(ξ) 6= 0 for almost every ξ ∈ Rd. Since the above identity holds for all

functions f, g in L2(R
d) as long as the support of f̂ is contained inside Bǫ(ξ0) and

the support of ĝ is contained inside Bǫ(ξ + 2πω0), we now easily deduce from the
above identity that

∑
ℓ∈{16n6r : ω∈ΩMn} âℓ(ξ)âℓ(ξ + 2πω0) = δ(ω0) for almost every

ξ ∈ Bǫ(ξ0). Since ω0 ∈ Ω and ξ0 ∈ Rd can be arbitrarily chosen, we now conclude
that (2.7) holds.

The theorem is proved.
If r = 1 and M1 = Id in Theorem 3.1, then we must have â1 = 1 (that is, a1 = δ)

and consequently for this particular case, Ta1,Idv = v and Sa1,Idv = | det(M)|v, that
is, up to a multiplicative constant, the data is just copied.

3.2. Tight Frame Structure. For any positive integer J , we now construct a
tight affine-like frame ASJ in L2(R

d) corresponding to the decomposition and recon-
struction algorithms, (FAD) (Figure 2.2) and (FAR) (Figure 2.3), respectively. Let
a be a filter on Zd and M0 be a d × d dilation matrix, for example, M0 = 2Id and a
is a tensor product filter. We assume that

φ̂(ξ) :=

∞∏

j=1

â((MT

0 )
−jξ), ξ ∈ Rd

is a well-defined function in L2(R
d) and we also assume that there exist filters b1, . . . , br

such that

â(ξ)â(ξ + 2πω) +
r∑

ℓ=1

b̂ℓ(ξ)b̂ℓ(ξ + 2πω) = δ(ω), ω ∈ ΩM0 .

Based on these, we then define

ψ̂ℓ(MT

0 ξ) := b̂ℓ(ξ)φ̂(ξ), ℓ = 1, . . . , r.

Then the system

WS(ψ1, . . . , ψr) := {ψ1
M

j
0;k
, . . . , ψr

M
j
0;k

: j ∈ Z, k ∈ Zd}
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forms a tight frame in L2(R
d) by the Unitary Extension Principle of [34] (see also

[10, 21]).
Next, we use this standard tight frame system to derive a new tight affine-like

frame ASJ in L2(R
d) corresponding to the decomposition and reconstruction algo-

rithms, (FAD) (Figure 2.2) and (FAR) (Figure 2.3), respectively.
First, denote

ψ(0,...,0) = φ.

Then, let β ∈ LL
J ∪⋃J

j=1 LH
j with β ∈ LL

J,β(1) , β
(1) ∈ LL

J−1, or β ∈ LH
j,β(1) , β

(1) ∈ LL
j−1

for some j ∈ {1, . . . , J}. Then we recursively define affine functions by

ψ̂β(MT

βξ) := âβ(ξ)ψ̂β(1)(ξ).

Further, let β(2) ∈ LL
j−2,µ(2) , etc. Using this sequence, we recursively define matrices

by

Nβ := M
−1
β M

−1
β(1) · · ·M−1

β(j−1)M
−1
β(j) .

We now define the associated affine-like system in the following way:
Definition 3.2. Retaining the introduced notions and definitions, the affine-like

system ASJ is defined by

ASJ := {ψ1
M

j
0;k
, . . . , ψr

M
j
0;k

: j > J, k ∈ Zd} ∪ {ψβ

NβM
J
0 ;k

: k ∈ Zd, β ∈ LL
J ∪

J⋃

j=1

LH
j },

where we also employ the notation introduced in (1.1).
We next show that this system – although in general not forming an orthonormal

basis – still always constitutes a tight frame.
Theorem 3.3. For any positive integer J , ASJ is a tight frame for L2(R

d).
Proof. By Theorem 3.1, it is not difficult to deduce that

∑

β∈LL
j ∪LH

j

∑

k∈Zd

|〈f, ψβ

NβM
J
0 ;k

〉|2 =
∑

β∈LL
j−1

∑

k∈Zd

|〈f, ψβ

NβM
J
0 ;k

〉|2.

Now from the above relation, we see that
∑

β∈LL
J
∪⋃

J
j=1 LH

j

∑

k∈Zd

|〈f, ψβ

NβM
J
0 ;k

〉|2 =
∑

k∈Zd

|〈f, ψ(0,...,0)

MJ
0 ;k

〉|2 =
∑

k∈Zd

|〈f, φMJ
0 ;k

〉|2.

By our given assumption on φ and ψ1, . . . , ψr, it is known that {φMJ
0 ;k

: k ∈
Zd}∪ {ψℓ

M
j
0;k

: j > J, k ∈ Zd, ℓ = 1, . . . , r} is a tight frame for L2(R
d). Consequently,

∑

β∈LL
J
∪
⋃

J
j=1 LH

j

∑

k∈Zd

|〈f, ψβ

NβM
J
0 ;k

〉|2 +
∞∑

j=J

r∑

ℓ=1

∑

k∈Zd

|〈f, ψℓ
M

j
0;k

〉|2 = ‖f‖2L2(Rd).

Hence, ASJ is a tight frame for L2(R
d).

Next we analyze the approximation order of the affine-like system ASJ . For this,
for τ > 0, we recall that Hτ (Rd) consists of all functions f ∈ L2(R

d) satisfying

|f |2Hτ (Rd) :=
1

(2π)d

∫

Rd

|f̂(ξ)|2‖ξ‖2νdξ <∞.
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We say that a filter a : Zd 7→ C has τ sum rules if

∑

k∈Zd

a(n+M0k)(n+M0k)
β =

∑

k∈Zd

a(M0k)(M0k)
β

for all n ∈ Zd and for all β = (β1, . . . , βd) ∈ (N ∪ {0})d such that 0 6 β1, . . . , βd <
τ, β1 + · · ·+ βd < τ .

It follows from Theorem 3.3 that for any f ∈ L2(R
d), expanding f under the tight

frame ASJ , we have

f =
∑

β∈LL
J∪

⋃
J
j=1 LH

j

∑

k∈Zd

〈f, ψβ

NβM
J
0 ;k

〉ψβ

NβM
J
0 ;k

+

∞∑

j=J

r∑

ℓ=1

∑

k∈Zd

〈f, ψℓ
M

j
0;k

〉ψℓ
M

j
0;k

with the series converging absolutely in L2(R
d). We now consider the truncated series

PJf :=
∑

β∈LL
J
∪⋃

J
j=1 LH

j

∑

k∈Zd

〈f, ψβ

NβM
J
0 ;k

〉ψβ

NβM
J
0 ;k
.

By the same argument as in Theorem 3.3, it is not difficult to deduce that

PJf =
∑

k∈Zd

〈f, φMJ
0 ;k

〉φMJ
0 ;k

The next theorem now follows from well-known results (see, e.g., [10, 22, 26] and
references therein).

Theorem 3.4. Let ASJ be the tight frame for L2(R
d) introduced in Definition

3.2. Suppose that M0 is isotropic, that is, M0 is similar to a diagonal matrix with
all entries having the same modulus. If the filter a has τ sum rules, then ASJ has
approximation order τ , that is, there exists a positive constant C such that

‖f − PJf‖L2(Rd) 6 C| detM0|−τJ/d|f |Hτ (Rd) for all f ∈ Hτ (Rd), J ∈ N.

3.3. General Construction of an AMRA. Based on the work in [20, 21], we
shall first propose a general construction recipe for an AMRA. Then we shall present
two concrete examples in Subsections 3.4 and 4.3 to illustrate the general construction.
Let us start by recalling the comments after Corollary 2.3, in which it was pointed
out that the construction of a sequence of dilation matrices Mℓ, 1 6 ℓ 6 r, i.e.,
invertible integer matrices and filters aℓ, ℓ = 1, . . . , r satisfying (2.7), depends only
on the generated lattice MℓZ

d, 1 6 ℓ 6 r. Hence we first present a very general
construction of such a sequence of matrices and filters provided that the matrices
satisfy MℓZ

d = MZd for all 1 6 ℓ 6 r for some matrix M, which was the hypothesis
of Corollary 2.3.

For this, we first fix a sublattice Γ of Zd. Obviously, there exist many d × d
matrices M such that MZd = Γ. We now construct a set of tight frame filters for such
a lattice Γ so that

r∑

ℓ=1

âℓ(ξ)âℓ(ξ + 2πω) = δ(ω), ω ∈ ΩM. (3.6)
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As already mentioned before, the above equations in (3.6) only depend on ΩM, which
in turn only depend on the lattice MZd = Γ. Here we employ a technique as used in
[20, Cor. 3.4]. Since M is an integer matrix, it is a well-known fact from linear algebra
that there exist two integer matrices E and F such that | detE| = | detF | = 1 and

M = EDF, D = diag(d1, . . . , dm, 1, . . . , 1), d1 > . . . > dm > 1.

For the dilation matrix D, we first construct a tensor product tight affine frame filter
bank as follows. For each dn > 1, one can easily construct a one-dimensional tight
frame filter bank uℓ, ℓ = 1, . . . , rdn such that

rdn∑

ℓ=1

ûℓ(ξ)ûℓ(ξ + 2πω) = δ(ω), ω ∈ {0, 1
dn
, . . . , dn−1

dn
}. (3.7)

For the construction of (compactly supported) one-dimensional tight frame filters,
there exist a long list of references; examples are [10, 21, 22, 34].

Now we construct a tensor product filter bank by constructing filters U(ℓ1,...,ℓm)

on the lattice Zd as follows:

U(ℓ1,...,ℓm)(β1, . . . , βm, βm+1, . . . , βd) := uℓ1(β1) · · ·uℓm(βm), β1, . . . , βd ∈ Z.
(3.8)

This generates a total of r :=
∏m

j=1 rdj filters. We reorder them as U1, . . . , Ur.
By the definition of ΩDF , we see that ΩDF has the tensor product structure:

ΩDF = {0, 1
d1
, . . . , 1

d1
} × · · · × {0, 1

dm
, . . . , 1

dm
} × {0} × · · · × {0}. (3.9)

By the tensor-product structure in (3.8) and the tensor-product structure of ΩDF in
the (3.9), using (3.7), one can easily check that

∑

ω∈ΩDF

Ûℓ(ξ)Ûℓ(ξ + 2πω) = δ(ω), ξ ∈ Rd. (3.10)

Now we define âℓ(ξ) := Ûℓ(E
Tξ), ξ ∈ Rd and ℓ = 1, . . . , r. By M = EDF and the

definition of ΩM in (2.4), we have ΩM = {ETζ | ζ ∈ ΩDF }. Changing from the
variable ξ to ETξ in (3.10), we deduce that

∑

ω∈ΩM

âℓ(ξ)âℓ(ξ + 2πω) = δ(ω), ξ ∈ Rd. (3.11)

In other words, using a tensor product construction, for any sublattice of Zd generated
by MZd, we can easily obtain a set of (compactly supported) tight affine(-like) frame
filters satisfying (3.11). It is very important to notice that the above construction only
depends on the lattice MZd instead of the dilation matrix M itself. For more details
on construction of high-dimensional wavelet filter banks using the tensor product
methods, see [20, 21].

Next, we shall present a general construction of tight affine(-like) frame filters to
fulfill the need in this paper. Suppose that we are given a group of dilation matrices
Mℓ, ℓ = 1, . . . , r. To achieve directionality, as discussed above, only the dilation
matrices for the low-pass filters will be important. In other words, if shear matrices
are involved, i.e., direction-based matrices, they play an important role for low-pass
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filter only and for high-pass filters, the choice of the dilation matrices does not matter,
since no further decomposition will be performed for high-pass coefficients.

We group these dilation matrices into subgroups according to their lattices MℓZ
d:

if the lattices MℓZ
d = Mℓ′Z

d are the same, then Mℓ,Mℓ′ are grouped into the same
group. For each dilation matrix in a subgroup, we only use a fixed set of tight affine
frame filters that are constructed for that lattice. In other words, for a given lattice,
we have a set of tight affine frame filters and we have complete freedom in choosing
the direction-based matrices, for instance, shear matrices, to achieve directionality as
long as the resulting lattice is the same given lattice.

Suppose now that we choose N sets of such tight affine frame filters for all the
groups of dilation matrices. Since these N sets of tight affine frames are completely
independent, when we put them together to get one whole set of tight affine frame
filters, we have to multiply the factor 1√

N
to every involved filter in the set. Now it

is straightforward to see that the total collection of all such N sets of renormalized
tight affine frame filters indeed forms a collection of tight affine frame filters satisfying
(2.7), where r is the total number of all the involved filters. It is also very important
to notice that the renormalization of the filters does not reduce the directionality of
the tight affine frame system, since the coefficients in the same band has the same
ordering of magnitude as the one without renormalization.

3.4. An Example of Applications of AMRA. Based on the general con-
struction of an AMRA discussed in the previous subsection, we now present one
explicit example of an AMRA and discuss applications to image denoising, see also
[25]. Even though we will construct a wavelet frame system consisting of piecewise
linear spline exhibiting a relatively simple AMRA structure, some improvements in
image denoising can already be observed as compared to regular MRA framelet based
denoising. Since however applications are not the focus of this paper, the example
given here shall only illustrate the potential of our framework and show how to utilize
this general construction in particular applications.

Let now the filters u0, u1, and u2 be defined by

u0(ξ) :=
1

4
eiξ(1 + e−iξ)2, u2(ξ) :=

√
2

4
(e−iξ − eiξ), u2(ξ) :=

1

4
eiξ(e−iξ − 1)2. (3.12)

Notice that u0 is the refinement mask of the centralized piecewise B-spline φ(x) =
max (1− |x|, 0). Then the following UEP condition is satisfied (see [34]):

2∑

ℓ=0

ûℓ(ξ)ûℓ(ξ + 2πω) = δ(ω), ω ∈ {0, 12}.

At each level j, we now choose the dilation matrices Mj,ℓ, ℓ = 1, . . . , rj by

Mj,ℓ = Ej,ℓM0,

where M0 = 2I2 and Ej,ℓ, ℓ = 1, . . . , rj with rj 6 5 are chosen from the set of shear
matrices:

{(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
1 −1
0 1

)
,

(
1 0
−1 1

)}
,

which we label for later purposes by E1, . . . , E5. We wish to mention that Mj,ℓZ
2 =

2Z2 for all ℓ = 1, . . . , rj is ensured by this choice. At each level j, we now use the
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Table 3.1
PSNR values of Numerical results using framelet based ℓ1 norm regularizations for image de-

noising with σ = 20.

denoising “bowl256” “barbara512” “baboon512” “zebra512”
MRA framelet 28.77 27.39 25.81 28.19
AMRA framelet 29.88 28.05 25.91 28.57
Sequence of Ek (E1, E5, E3) (E2, E4, E3) (E1, E4, E2) (E1, E3, E4)

following tensor product filters:

aℓ1,ℓ2(β1, β2) := uℓ1(β1)uℓ2(β2), β1, β2 ∈ Z2, ℓ1, ℓ2 = 0, 1, 2,

where a0,0 is the low-pass filter and the other filters aℓ1,ℓ2 are high-pass filters. The
choice of Ej,ℓ for each level j is adaptive to the content of the given images. We
expect such an adaptive nonstationary framelet system with associated AMRA to
provide much sparser approximations of images, while associated transforms show
the same computational efficiency and implementation simplicity as for 2D tensor
product framelet systems.

The benefit of using such an AMRA framelet system is demonstrated for image
denoising, see also [25]. In the experiments, the noise component is synthesized by
Gaussian noise with noise level σ = 20. Then the image is recovered from the noisy
observation X by solving the following balanced minimization mode of [37, 13]:

f :=WTv; v = min
ṽ

1

2
‖X −WTṽ‖22 +

κ

2
‖(I −WWT)ṽ‖22 + λ‖ṽ‖1,

where W denotes the linear decomposition – the inverse being WT due to the tight
frame property – and X = f + ǫ denotes the noisy observation of the original image
f corrupted by Gaussian noise ǫ with variance σ. The APG method as given in [37]
is then used to solve the above minimization with κ = 5 and λ = 0.11. Throughout
the experiments, a three-level decomposition (J = 3) of AMRA framelets is applied
and at each level the choice of the matrix Ej,ℓ is automatically determined by some
simple analysis on the output of the framelet coefficients. The PNSR values of the
results from both regular framelets and AMRA framelets are listed in Table 3.1 and
sample images are shown in Figure 3.1. It is evident from the numerical results that
AMRA framelets are superior to regular MRA framelet in terms of both PSNR values
and visual quality.

4. Shearlet Systems with an Associated AMRA. In this section, we will
apply our general framework to the special case of shearlets. This leads to shearlet
systems, especially compactly supported ones, associated with an AMRA structure
and fast decomposition and reconstruction algorithms. We anticipate that our con-
siderations will improve the applicability of shearlets to various applications.

4.1. Traditional Shearlet Systems. The continuum shearlet transform with
discrete parameters [17, 29] for functions in L2(R

d) uses a two-parameter dilation
group, where one parameter indexes scale, and the second parameter indexes orien-
tation. For each c > 0 and t ∈ R, let Ac denote the parabolic scaling matrix and St

denote the shear matrix of the form

Ac :=

(
c 0
0

√
c

)
, c > 0 and St :=

(
1 t
0 1

)
, t ∈ R, (4.1)
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(a) (b)

(c) (d)

Fig. 3.1. (a) Original image “Barbara”; (b) Noisy image with σ = 20; (c) Results from MRA
framelet; (d) Results from AMRA framelet

.

respectively. To provide an equal treatment of the x- and y-axis, we split the frequency
plane into the horizontal cone

C0 = {(ξ1, ξ2) ∈ R2 : |ξ1| > 1, |ξ1/ξ2| > 1},

the vertical cone

C1 = {(ξ1, ξ2) ∈ R2 : |ξ2| > 1, |ξ1/ξ2| 6 1},

as well as a centered rectangle

R = {(ξ1, ξ2) ∈ R2 : ‖(ξ1, ξ2)‖∞ < 1}

(see Figure 4.1 (a)).

For cone C0, at scale j > 0, orientation k = −2j, . . . , 2j, and spatial position
m ∈ Z2, the associated shearlets are then defined by

ση = 2j
3
4ψ(SkA4j · −m),
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C0

C1

C0

R

C1

(a) (b)

Fig. 4.1. (a) The cones C0 and C1 and the centered rectangle R in frequency domain. (b) The
tiling of the frequency domain induced by discrete shearlets.

where η = (j, k,m, ι) index scale, orientation, position, and cone. The shearlets for
C1 are defined likewise by symmetry, as illustrated in Figure 4.1 (b), and we denote
the resulting shearlet system by

{ση : η ∈ N0 × {−2j, . . . , 2j} × Z2 × {0, 1}}. (4.2)

This is an affine-like system as defined before.
Notice that we chose a scaling of 4j. Shearlet systems can be defined similarly for

a scaling of 2j , however, in this case the odd scales have to be handled particularly
carefully.

One particular interesting shearlet generator is the function ψ ∈ L2(R
d) defined

by

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1
),

where ψ1 ∈ L2(R) is a wavelet with ψ̂1 ∈ C∞(R) and supp ψ̂1 ⊆ [−4,− 1
4 ] ∪ [ 14 , 4],

and ψ2 ∈ L2(R) is a ‘bump’ function satisfying ψ̂2 ∈ C∞(R) and supp ψ̂2 ⊆ [−1, 1].
Filling in the low frequency band appropriately, with this particular generator the
shearlet system (4.2) can be proven (see [17, Thm. 3]) to form a tight frame for

{f ∈ L2(R
d) : suppf̂ ⊂ C0 ∪ C1}.

Concluding, the definition just discussed shows that shearlets live on anisotropic
regions of width 2−2j and length 2−j at various orientations, which are parameterized
by slope rather than angle as for second generation curvelets.

4.2. Shearlet Unitary Extension Principle. Let us now apply Theorem 2.2
to the special situation of shearlet systems. This leads to the following result, which
we could coin the ‘Shearlet Unitary Extension Principle’.

Theorem 4.1. Let St1 , . . . , Str be a selection of 2 × 2 shear matrices in (4.1).
Let aℓ, ℓ = 1, . . . , r, be finitely supported filters on Z2. Then the following perfect
reconstruction property in the discrete domain holds:

r∑

ℓ=1

Saℓ,StℓA4
Taℓ,StℓA4

v = v, v ∈ l2(Z
2),

if and only if, for any ω ∈ Ω =
⋃r

ℓ=1 ΩStℓA4
, where ΩStℓA4

:= [(S−tℓ)T(14Z × 1
2Z)] ∩

[0, 1)2,
∑

ℓ∈{16n6r : ω∈ΩStnA4
}
âℓ(ξ)âℓ(ξ + 2πω) = δ(ω),
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where δ denotes the Dirac sequence such that δ(0) = 1 and δ(ω) = 0 for ω 6= 0.

4.3. Shearlet Constructions and Algorithms. We next focus on explicit
shearlet constructions. For this, we recall that the dilation for shearlets is composed
of a shear matrix Stℓ with tℓ ∈ Z and a parabolic scaling matrix Ac with c = 4 in
(4.1). Thus, at each level of the decomposition, the matrices Mℓ will be chosen as

Mℓ = StℓA4,

for some shear matrices Stℓ such that the selection of the shear matrix parameters
tℓ ∈ Z should be driven by the particular application at hand, and A4 is the parabolic
scaling matrix, where the choice of the value 4 (in contrast to 2) avoids technicalities
caused by square roots. As already elaborated upon before, which of those matrices
will be labeled low- and which one high-pass is left to the user.

Aiming towards examples for possible filters for the Shearlet Unitary Extension
Principle, we first observe that there exists only two different lattices in Theorem 4.1:
Consider the product StℓA4. If tℓ is an even integer, then

StℓA4Z
2 = A4Z

2;

if tℓ is an odd integer, then

StℓA4Z
2 = SA4Z

2, where S := S1 =

(
1 1
0 1

)
.

Hence, we only need to design two sets of tight shearlet frame filters in advance
for the lattices A4Z

2 and SA4Z
2, respectively, following the general construction

in Subsection 3.3. Then we have complete freedom in choosing the shear matrix
parameters tℓ to obtain a whole set of tight shearlet frame filters satisfying perfect
reconstruction (see condition (i) in Theorem 4.1).

Let us now provide a concrete construction, which is also a special case of the
general construction of an AMRA described in Subsection 3.3. For this, let u0, u1, u2
be the filters defined in (3.12) and set

ˆ̃u0(ξ) :=
1

16
ei3ξ(1 + e−iξ)2(1 + e−i2ξ)2,

ˆ̃u1(ξ) :=

√
2

16
ei3ξ(e−iξ − 1)(1 + e−iξ)3(1 + e−i2ξ),

ˆ̃u2(ξ) :=
1

16
ei3ξ(e−iξ − 1)2(1 + e−iξ)4,

ˆ̃u3(ξ) :=
1

4
eiξ(e−iξ − 1)(1 + e−iξ),

ˆ̃u4(ξ) :=

√
2

8
eiξ(e−iξ − 1)2,

ˆ̃u5(ξ) :=
1

4
e−iξ(e−iξ − 1)(1 + e−iξ),

ˆ̃u6(ξ) :=

√
2

8
e−iξ(e−iξ − 1)2.

One can directly check that ũ0, . . . , ũ6 satisfy the Unitary Extension Principle with
dilation 4:

6∑

ℓ=0

ˆ̃uℓ(ξ)ˆ̃uℓ(ξ + 2πω) = δ(ω), ω ∈ {0, 14 , 12 , 34}.



ADAPTIVE MRA STRUCTURES AND SHEARLET SYSTEMS 23

For the lattice A4Z
2, we use the following tensor product tight framelet filter bank:

aℓ1,ℓ2(β1, β2) := ũℓ1(β1)uℓ2(β2), β1, β2 ∈ Z2, ℓ1 = 0, . . . , 6, ℓ2 = 0, 1, 2,

where a0,0 is the low-pass filter and the other filters aℓ1,ℓ2 are high-pass filters.

For the lattice SA4Z
2, we simply use the sheared tight framelet filter bank

ãℓ1,ℓ2 , ℓ1 = 0, . . . , 6 and ℓ2 = 0, 1, 2, where

̂̃aℓ1,ℓ2(ξ) := âℓ1,ℓ2(S
Tξ), ξ ∈ R2.

Depending on the application at hand, we can adaptively choose the shear matrices
to achieve flexibility and directionality for various types of data. There are certainly
various other choices of tight framelet filter banks which can be employed in our
construction of an AMRA.

Each such a choice of filters for each level then leads to a Fast Adaptive Shearlet
Decomposition associated with a Fast Adaptive Shearlet Reconstruction. Those two
algorithms are described in Figures 4.2 and 4.3. Notice that here – as already in the
general version of (FAD) and (FAR) – the shear matrices can be chosen differently
at each level of the decomposition. We can envision that this adaption can be made
flexible dependent on a quick analysis, say, thresholding of the data outputted in the
previous decomposition step. The algorithm leaves all those possibilities open. The
great flexibility provided here should be utilizable for each particular application.

REFERENCES

[1] J.-F. Cai, R. H. Chan and Z. Shen, A framelet-based image inpainting algorithm, Appl. Comput.
Harmon. Anal. 24 (2008), 131–149.

[2] J.-F. Cai, H. Ji, C. Liu and Z. Shen, Blind motion deblurring from a single image using sparse
approximation, IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2009.

[3] J.-F. Cai, S. Osher and Z. Shen, Linearized Bregman iteration for frame based image deblurring,
SIAM J. Imaging Sci. 2 (2009), 226–252.

[4] E. J. Candès, L. Demanet, D. L. Donoho and L. Ying, Fast discrete curvelet transforms,
Multiscale Model. Simul. 5 (2006), 861–899.

[5] E. J. Candès and D. L. Donoho, New tight frames of curvelets and optimal representations of
objects with C2 singularities, Comm. Pure Appl. Math. 56 (2004), 219–266.

[6] E. J. Candès and D. L. Donoho, Continuous curvelet transform: I. Resolution of the wavefront
set, Appl. Comput. Harmon. Anal. 19 (2005), 162–197.

[7] E. J. Candès and D. L. Donoho, Continuous curvelet transform: II. Discretization of frames,
Appl. Comput. Harmon. Anal. 19 (2005), 198–222.

[8] R. H. Chan, S. D. Riemenschneider, L. Shen, and Z. Shen, Tight frame: an efficient way for
high-resolution image reconstruction, Appl. Comput. Harmon. Anal. 17 (2004), 91–115.

[9] S. Dahlke, G. Steidl, and G. Teschke, The Continuous Shearlet Transform in Arbitrary Space
Dimensions, J. Fourier Anal. Appl., to appear.

[10] I. Daubechies, B. Han, A. Ron, and Z. Shen, Framelets: MRA-based constructions of wavelet
frames, Appl. Comput. Harmon. Anal. 14 (2003), 1–46.

[11] I. Daubechies, G. Teschke, and L. Vese, Iteratively solving linear inverse problems under general
convex constraints, Inverse Problems and Imaging 1 (2007), no. 1, 29.

[12] M. N. Do and M. Vetterli, The contourlet transform: an efficient directional multiresolution
image representation, IEEE Trans. Image Process. 14 (2005), 2091–2106.

[13] B. Dong, Z. Shen, MRA-based wavelet frames and applications, IAS Lecture Notes Series,
Summer Program on “The Mathematics of Image Processing”, Park City Mathematics
Institute, 2010.

[14] D. L. Donoho, Wedgelets: nearly minimax estimation of edges, Ann. Stat. 27 (1999), 859–897.
[15] G. Easley, D. Labate, and W. Lim, Sparse Directional Image Representations using the Discrete

Shearlet Transform, Appl. Comput. Harmon. Anal. 25 (2008), 25–46.



24 B. HAN, G. KUTYNIOK, AND Z. SHEN

FASD (Fast Adaptive Shearlet Decomposition)

Parameters:
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2).
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• Set of all indices L :=
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j=1 LL

j ∪⋃J
j=1 LH

j .
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j,α, α ∈ LL
j−1 do
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Output:
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j=1 LH
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Fig. 4.2. The FASD Algorithm for a fast adaptive decomposition using shearlet systems.
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FASR (Fast Adaptive Shearlet Reconstruction)

Parameters:
• Number of iterations J ∈ N.
• Set of all indices L :=

⋃J
j=1 LL

j ∪⋃J
j=1 LH

j .

• Number of reconstructions rβ for each position β ∈ LL
j−1, j = 1, . . . , J .

• Separators between low- and high-pass parts sβ 6 rβ for each position
β ∈ LL

j−1, j = 1, . . . , J .

• Low-pass coefficients vβ , where β ∈ LL
J .

• High-pass coefficients wβ , where β ∈ ⋃J
j=1 LH

j .

• Sequence of finitely supported filters aβ ∈ l2(Z
2), β ∈ L, satisfying the

conditions in Theorem 4.1.
• Sequence of shear matrices (Sβ)β∈L satisfying the conditions in Theorem
4.1.

Recursive Algorithm:
1) For j = J − 1, . . . , 0 do
2) For α ∈ LL

j do
3) Set vα =

∑
β∈LL

j+1,α
Saβ ,SβA4vβ +

∑
γ∈LH

j+1,α
Saγ ,SβA4wγ .

4) end;
5) end;

Output:
• Data v(0,...,0) ∈ l2(Z

d).

Fig. 4.3. The FASR Algorithm for a fast adaptive reconstruction using shearlet systems.
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