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Abstract

Applications such as wireless communications require efficient sensing techniques of signals with the a
priori knowledge of those being lattice-valued. In this paper, we study the impact of this prior information on
compressed sensing methodologies, and introduce and analyze PROMP (“PReprojected Orthogonal Matching
Pursuit”) as a novel algorithmic approach for sparse recovery of lattice-valued signals. More precisely, we first
show that the straightforward approach to project the solution of Basis Pursuit onto a prespecified lattice
does not improve the performance of Basis Pursuit in this situation. We then introduce PROMP as a novel
sparse recovery algorithm for lattice-valued signals which has very low computational complexity, alongside
a detailed mathematical analysis of its performance and stability under noise. Finally, we present numerical
experiments which show that PROMP outperforms standard sparse recovery approaches in the lattice-valued
signal regime.

Keywords: Compressed Sensing, Basis Pursuit, Lattice Search, Orthogonal Matching Pursuit, High-dimensional
Geometry.

1 Introduction

During the last 10 years, the area of compressed sensing or, more generally, sparse recovery has matured to a
novel research area intersecting, in particular, mathematics, computer science, and electrical engineering. Its
main objective is to efficiently solve underdetermined linear equations

Ax = b,

with A ∈ Rm,d and b ∈ Rm, m < d under the additional assumption that the solution x ∈ Rd is sparse. The
feasibility of this hypothesis is by now generally accepted, and sparsity of data can be identified as a new paradigm
in signal and image processing. The most basic notion of sparsity of a vector x = (x1, . . . , xd) states that x is
called k-sparse provided that the number of non-zero elements xi is less than or equal to k. In this situation,
sufficient conditions – typically in terms of incoherence properties of the measurement matrix A and the sparsity
of x – for precise recovery of the signal b by, for instance, convex optimization algorithms are known even when
the measurements are contaminated with noise. We refer the interested reader to [11] for a survey.

In many applications however, additional information of the original signal is known and should be exploited to
improve recovery guarantees. In this paper, we will focus on the situation of lattice-valued signals, which appear,
for instance, in massive MIMO [35], wideband spectrum sensing [2] and error correcting codes [5]. Previous
work on sparse recovery aspects of this situation has however mostly focused on integer-valued or binary signals
and without a detailed mathematical analysis of recovery guarantees. Hence, a sparse recovery algorithm for
lattice-valued signals alongside a precise analysis of its performance also under noise is still an open problem.
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Figure 1: Sparse signals x0 lie on low-dimensional faces of the `1 unit ball.

1.1 Algorithms for Sparse Recovery

The most standard approach to the sparse recovery problem is the Basis Pursuit algorithm, [8] or rather method,
which consists of searching for the solution to the equation Ax = b having the smallest `1-norm, i.e.,

‖x‖1 s.t. Ax = b. (P1)

A beautiful geometrical intuition stands behind this approach: Sparse vectors x0 with unit `1-norm lie on low-
dimensional faces of the cross polytope T d = {x | ‖x‖1 = 1}. Thus it is probable that the set x0 + kerA only
touches T d in x0 (Figure 1). By using random matrices such as Gaussian iid, it is possible to achieve a very high
recovery probability given that the number of measurements satisfies m & s log(d), where s is the sparsity of the
signal x0 [6].

The sparse recovery algorithm Orthogonal Matching Pursuit (Algorithm 1) is of different nature [34] . Its
objective is to iteratively construct a support estimate S. In each step, one greedily chooses a new index i to
minimize

min
supp v⊆S∪i

‖Av − b‖2 .

This algorithm also requires an order of s log(d) measurements to succeed at recovering an s-sparse vector x0

[43]. Empirically, it performs slightly worse than Basis Pursuit when it comes to recovery probabilities. Main
advantages of Orthogonal Matching Pursuit are though that this algorithm is very fast and easy to implement.
[42]. Since this algorithm will be a backbone of the algorithmic approach being developed in our paper, we briefly
state its pseudo-code version.

Algorithm 1: OMP – Ortogonal Matching Pursuit

Data: A matrix A ∈ Rm,d and a vector b ∈ Rm.
Result: An estimate x of a sparse solution to Ax = b.
Initalize x = 0, S = ∅ and ρ = b.

1 while Ax 6= b do
2 Calculate j = argmaxi |〈ai, ρ〉|.
3 Update Ŝ = Ŝ ∪ {j}.
4 Update x = argminsupp v⊆Ŝ ‖Av − b‖ and ρ = b−Ax.

Certainly, a variety of other algorithm performing sparse recovery are available, and we refer to [11] for a
survey. Since in the sequel Basis Pursuit and Orthogonal Matching Pursuit will play the key roles, we for now
refrain from detailing other approaches.
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1.2 Models of Sparse Signals

To accommodate and also utilize specific priors from applications for the sparse signals to be recovered, various
models of sparse signals have been introduced. Let us briefly recall some of those closest to our approach, without
any claim of completeness.

We start with highlighting structural assumptions on the set of sparse signal, which were incorporated into
the classical Basis Pursuit algorithm by suitable modifications. One important case are binary signals leading the
framework of 1-bit Compressed Sensing [4]. Another popular assumption is block sparsity of the signal. In this
case, a modified version of Basis Pursuit leads to better reconstruction properties than for general signals [39]. A
slightly different prior is the assumption that certain parts of the possible index set {1, . . . d} are more probable
to be part of the support of the solution vector than others. A proposed method to account for this, which has
been thoroughly investigated is weighted `1-minimization [19, 24, 33].

While modifications of Basis Pursuit are much more popular, there have also been approaches to incorporate
prior knowledge about a specific model of sparse signals into greedy approaches. In this regime we would like
to highlight the situation of a known support estimate for the original sparse signals discussed before, in which
a variant of OMP was warm-started [7]. Variants of this approach – yet still following the same idea – are
contained, for instance, in [40].

1.3 Lattice-valued Signals

In this paper, we will focus on the structural assumption that the sparse signal is lattice-valued. More precisely,
we assume that the original signal x0 ∈ GZd with G ∈ Rd,d an invertible matrix. The sparsity constraint will be
implemented by considering the situation when x0 possesses a sparse representation in the lattice GZd, i.e., when

x0 = Gv0 where v0 ∈ Zd is a sparse vector

in the sense of v0 having few non-zero entries. If v0 is s-sparse, i.e., the number of non-zero entries in v0 is at
most s, we will refer to x0 as being s-G-sparse.

This class of signals appears naturally in wireless communications due to the fact that typically signals are
quantized before being transmitted. Often, the signals are even bit sequences, i.e., members of the set {0,±1}d.
Furthermore, there is several applications of wireless communications compressed sensing or, more generally,
sparse recovery plays an increasingly important role, including massive MIMO [35], wideband spectrum sensing
[2], and error correcting codes [5]. Therefore, there is a pressing need to specialize compressed sensing techniques
to lattice-valued signals.

1.4 Previous Work

The problem of developing a sparse recovery algorithm for lattice-valued sparse signals has already been con-
sidered by several authors, however mostly focusing on integer-valued or binary signals and without a detailed
mathematical analysis of recovery guarantees. Let us briefly report on the different approaches which have been
suggested.

One line of research has been to model compressed sensing as a graph-theoretical problem [31, 45]. Put
shortly, one constructs a bipartite graph consisting of nodes Ci, i = 1, . . . d representing the entries of the sought
for vector x0 and nodes Vi representing the entries of the vector b = Ax. An edge is then drawn between Vi and Cj
if aij 6= 0. The basic idea consists of identifying V -nodes which are only connected to one C-node, and iteratively
removing the corresponding edges and nodes. Although the approach certainly is interesting, it will only work
provided the graph contains only relatively few edges, i.e., in case the matrix A is sparse. In many applications,
this assumption is however not very realistic such as, for instance, in wireless communications, where the matrix
is often assumed to be Gaussian. Moreover, the beautiful geometric intuition behind compressed sensing is totally
lost in this approach.

A different approach, which is not constrained to the setting of binary signals but instead considers signals
with entries from a finite alphabet F = {0, 1, . . . p} is considered, for instance, the papers [15, 41]. A major
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difference from compressed sensing is that F is not only regarded as a set, but in fact as a field (i.e., p is assumed
to be prime). Hence, the sensing matrix A is chosen from Fm,d and all operations are made modulo p. This is
indeed very intriguing, but after all relatively far from the problem we are considering in this article.

An important algorithm for general recovery of integer signals from noisy linear measurements is the sphere
decoder [1]. There have been several attempts to adapt the sphere decoder to sparse signals such as in [41, 47].
This leads to algorithms with more robustness to noise and which are faster. However, the case of underdetermined
systems is still relatively problematic. There do exist a few papers dealing with this situation as well: The authors
[44] suggest to artificially add extra equations to the system. They show that this approach will work for so called
constant-modulus signaling schemes. It is probably not possible to achieve a good performance also for the sparse
setting which we are considering. Another philosophy was presented in [9]. The idea of that paper is to combine
sphere decoding of a part of length m of the signal with a brute force search over the rest of the signal. This
causes the complexity of the computations to grow immensely, if d� m. As of today, more sophisticated ways of
determining the remaining part of the signal have been developed, see for instance [46], but the methods remain
relatively heuristic, and theoretical performance guarantees are rare.

Yet another approach which has been considered is to use variants of convex optimization algorithms. The
paper [29] deals with the problem of recovering a signal in {±1}d from linear measurements using `∞-minimization:

min ‖x‖∞ subject to Ax = b.

The authors are able to derive the intriguing result that already as few as d
2 measurements will be sufficient to

almost certainly recover any signal in {±1}d. This high success probability is although heavily dependent on
the fact that the signals considered do not contain any zeros. This has the consequence that all entries in the
vector have the same absolute value. Such vectors are called saturated or democratic, and for such vectors, `∞-
minimization is perfectly suited [20]. Hence, although the results of this paper are a very interesting contribution,
its results are not applicable to sparse signals.

A clever modification of the basis pursuit procedure to solve the problem of sparse recovery of positive binary
signals, namely to add the constraint that each entry of the vector should lie between 0 and 1, e.g.

min ‖x‖1 subject to Ax = b,∀ i ∈ {1, . . . , d} : 0 ≤ x(i) ≤ 1.

was suggested in [14, 38]. This modification indeed leads to significantly better recovery probabilities. For
instance, for sparsity levels s greater than d

2 , only s measurements will suffice for the recovery of an s-sparse
signal. The positivity constraint is thereby not of major importance, since the constraint can be relaxed to
∀ i ∈ {1, . . . , d} : −1 ≤ x(i) ≤ 1 to incorporate general binary signals. The only problem of this approach that it
does not work for more general integer-valued signals.

1.5 The PROMP Algorithm

In this paper, which builds on the master thesis of one of the authors [17], we investigate the problem of sparse
recovery of lattice-valued signals on the one hand using convex optimization and on the other hand a greedy
approach. The main representatives of those two classes of algorithms, namely Basis Pursuit and Orthogonal
Matching Pursuit, will serve as our starting points.

First, we proclaim and analyze a very natural modification of Basis Pursuit to yield better recovery results
for sparse lattice-valued signals, namely what we coin Basis Pursuit with Post-Projection. In this approach, first
Basis Pursuit is performed, i.e., an initial signal estimate x̂ is computed using P1, followed by a projection onto
the respective lattice GZd, where G is an invertible Rd,d-matrix. With Theorems 2.1 and 2.2 we surprisingly show
that for most lattices, including the important case of Zd, there does not exist a measurement matrix A ∈ Rm,d
satisfying the following condition: There exists a signal x0 which is exactly recovered from Ax0 by Basis Pursuit
with Post-Projection, but the initial signal estimate x̂ from Basis Pursuit differs from x0. Stating this concisely,
one can say that post-projection is redundant.

Second, we pursue a different strategy, namely to adapt Orthogonal Matching Pursuit to incorporate the prior
information of the signal to be lattice-valued. This general tactic was already pursued in the papers [36, 37]. The
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authors of those papers altered the calculation of the index which is added to the support approximation (line
2 of Algorithm 1), using both lattice projection algorithms, e.g., sphere decoding and soft-feed back techniques
arising from a Bayesian approach.

We will do something radically different than the technique from [36, 37]. Instead of altering the Orthogonal
Matching Pursuit Algorithm itself, we will use a Support Approximation Step to obtain an approximate idea of
the support of the signal x0 somehow in the spirit of preconditioning. This Support Approximation Step consists
of performing the `2-minimization

min ‖x‖2 subject to Ax = b, (P2)

and then forming a support estimate by hard thresholding:

Sϑ =
{
i | |x̂(i)| ≥ m

d
ϑ
}
,

where x̂ is the solution of P2 and ϑ ∈ (0, 1) is some parameter. It might come as a surprise that we use `2-
minimization. However, the use of `2-minimization has several advantages. Firstly, it is easy to implement and
can be computed quickly. And, secondly, the solution can be written down explicitly as

x̂ = ΠkerA⊥x0,

which allows for a rich theoretical study of its performance, also because of the fact that it is geometrically very
intuitive. In the second step of the algorithm, we then use Sθ to warm-start OMP , hence coining it Warm-Starting
OMP Step.

Algorithm 2 shows both steps in more detail. To highlight the idea of pre-projection as a way to approximate
the support set, we name is PROMP (PReprojected Orthogonal Matching Pursuit). We wish to emphasize that
in this paper, we concentrate on the Gaussian case for the measuring process. We however expect the method to
work for other measurement matrices as well, in particular, for partial samples of orthonormal bases.

Algorithm 2: PROMP – PRe-projected Ortogonal Matching Pursuit

Data: A matrix A ∈ Rm,d and a vector b ∈ Rm.
Result: An estimate x of a sparse, discrete solution of Ax = b.

1 Calculate w = argmin ‖u‖2 s. t. Au = b.
2 if Aw = b then

return x = w ; /* `2-min. alone was successful. */

else
3 Calculate the indices i for which |wi| · d/m ≥ 1/2. Form the set Sϑ of such indices.

4 Set x = argminsupp v⊆Sϑ ‖Av − b‖ and ρ = b−Ax, and initalize S = Sϑ.; /* Run OMP initialized

with Sϑ. */

5 while Ax 6= b do
6 Calculate j = argmaxi |〈ai, ρ〉|.
7 Update S = S ∪ j.
8 Update x = argminsupp v⊆Ŝ ‖Av − b‖ and ρ = b−Ax.

In this paper, we will provide a novel type of analysis on the impact of the warm starting procedure we propose
to the performance of Orthogonal Matching Pursuit. This analysis is independent of the concrete procedure of
building the support approximation, and is hence interesting in its own right. We are able to prove that in the
case of a Gaussian measurement matrix, the number of measurement vectors needed will be significantly reduced
provided that the support estimate is fairly correct. In particular, the performance may be improved although
some indices not contained in the support of x0 are included in the initial support approximation.
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Concerning our choice of the Support Approximation Step, we should mention that in general `2-minimization
as a mean of sparse recovery has been used very sparsely in the literature. After all, the solution of the problem
P2 will typically be non-sparse, as is well known. Indeed, one can easily convince oneself that the probability that
the solution of P2 is equal to x0 is zero for the case that A is Gaussian. One exception that should be mentioned
in this context, although it is not directly related to our work, is the method of iteratively reweighted least squares
[10]. Here, one alters the `2-norm using weights, which are iteratively adapted to the signal in order for it to
mimic the behaviour of the `1, or even the non-convex `p-norm for p ∈ (0, 1). We will though see that in our case,
`2-minimization serves perfectly as an approximate procedure for deriving a meaningful support estimate.

1.6 Our Contribution

Our contribution is hence four-fold. First, we provide a detailed analysis that the most natural approach for sparse
recovery of lattice-valued signals, which is to apply Basis Pursuit followed by projection onto the prespecified
lattice of the original signal, is completely redundant. Second, we introduce with PROMP a novel algorithm
designed for lattice-valued signals. Numerical experiments show that PROMP outperforms standard approaches
such as Basis Pursuit in the lattice-valued signal regime. Advantages of PROMP are also its low computational
complexity and the fast that it is very easy to implement. Third, the preprocessing step of PROMP can also
be exploited for other sparse recovery algorithms leading to improved performance for lattice-valued signals. We
anticipate that our idea of preprocessing might lead to the development of other preprocessing steps adapted to
the structural preknowledge of the original signal. And, fourth, we provide a detailed mathematical analysis of
the sparse recovery guarantees of PROMP also under noise. This analysis, as mentioned before, is independent
of the concrete procedure of building the support approximation, and might be also interesting for the analysis
of similar algorithmic approaches.

1.7 Outline

The paper is organized as follows. The post-projection approach is presented and analyzed in Section 2. A
detailed analysis of the PROMP algorithm is provided in Section 3 with Subsection 3.1 containing results on the
accuracy of the selected support set and a stability analysis of the Support Approximation Step and Subsection
3.2 proving successful recovery by the Warm-Starting OMP Step. Section 4 is then devoted to various numerical
experiments both in the exact and noisy regime as well as concerning comparison to other approaches. Since the
proofs of several results are rather technical in nature, the last Section 5 contains those outsourced proofs.

2 Post-Projection is Redundant

Let us begin by fixing the model situation. We will always assume that we are given m linear measurements of
the d-dimensional signal x0, expressed through a matrix A ∈ Rm,d. The signal x0 is assumed to lie on a lattice
Λ = GZd, where G ∈ Rd,d is an invertible matrix. We will often in particular consider the situation when x0 has
a sparse representation in the lattice, i.e., when there exists a sparse vector v0 ∈ Zd so that x0 = Gv0. If v0 is
s-sparse, we will refer to x0 as being s-G-sparse.

Now assume that x0 is s-G-sparse and we acquire measurements of the form Ax0. In this situation, a well-
known reasonable approach to reconstruct x0 would be to use Basis Pursuit [8], i.e., to solve

min ‖v‖1 subject to AGv = b, (P1,G)

where b = Ax0, aiming to find an estimate for v0, say v̂. Then use x̂ = Gv̂ as an estimate for x0. This approach
does, however, not at all use the fact that v0 ∈ Zd in the sense of using the information that the original signal v0

is integer valued. The perhaps most reasonable and simple way to incorporate this prior information is to choose
the point on the lattice Λ, which is the closest to x̂, as the estimate of x0, i.e., to post-project. Thus we now
consider Basis Pursuit with Post-Projection given by

ΠGZd(argmin ‖v‖1 subject to AGv = b),
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where ΠGZd denotes the orthogonal projection to the closest element in the lattice GZd in Euclidian distance.
Notice that this element might not be unique, and application of ΠGZd could yield a set. We now ask: Does this
enhance the recovery probability?

In order to investigate this question, let us begin by noting that the output of the procedure described above
will be equal to the ground truth signal x0 if and only if x̂ lies in the Voronoi region Ω(GZd, x0) of x0 in GZd [1],
which is

Ω(GZd, x0) =
{
v | ∀x ∈ GZd : ‖v − x0‖2 ≤ ‖v − x‖2

}
.

This is in turn the case precisely when v̂ ∈ G−1Ω(GZd, x0) = v0 +G−1Ω(GZd, 0). For convenience, let us define

PG := G−1Ω(GZd, 0).

We will see that the structure of PG actually determines if it is at all possible that a signal v0, which is not
reconstructed by Basis Pursuit directly, will be reconstructed by Basis Pursuit with Post-Projection. Let us start
by proving a relatively simple result in this direction, which shows that for certain lattices Basis Pursuit with
Post-Projection does in fact not improve recoverability.

Theorem 2.1. Let v0 ∈ Zd and x0 = Gv0, where G ∈ Rd,d is an invertible matrix. Suppose that the lattice GZd
has the property that

PG ⊆ (−1, 1)d. (1)

If all solutions of (P1,G) lie in v0 + PG, then all those solutions are equal to v0.

Proof. Since the case x0 = 0 is trivial, we may without loss of generality assume that x0 6= 0. Next assume,
towards a contradiction, that all solutions of (P1,G) with b = Ax0 are contained in v0 +PG, and that there exists
at least one solution, say v, which is not equal to v0. First, define the vector

1̂(i) =


1 , if v(i) > 0

−1 , if v(i) < 0

0 , else.

Then we have ‖v‖1 =
〈
1̂, v
〉
. Since PG ⊆ (−1, 1)d and all non-zero entries of v0 have absolute value at least

1, v and v0 have the same sign pattern on supp v0. Therefore, we also have ‖v0‖1 =
〈
1̂, v0

〉
, and consequently〈

1̂, v − v0

〉
= ‖v‖1 − ‖v0‖1 ≤ 0. Now, let ε > 0, and consider the vector

vε := v + ε(v − v0).

The geometry of the following arguments is illustrated in Figure 2. It is immediately clear that Avε = Av = Av0

and
〈
1̂, vε

〉
≤
〈
1̂, v
〉
. This means that if we can choose ε so that vε /∈ v0 +PG but still ‖vε‖1 =

〈
1̂, vε

〉
, the resulting

vector vε would be a solution of (P1,G) which does not lie in v0 + PG; a contradiction. We now argue that such
an ε always exists.

First observe that
〈
1̂, vε

〉
= ‖vε‖1 if and only if vε has the same sign pattern as v. This is true for any ε > 0,

provided that there does not exist some i for which the signs of v(i) and v(i)− v0(i) differ. In that case we can
thus choose ε in such a way that ‖vε − v0‖∞ ≥ 1. By assumption on PG, this implies vε /∈ v0 + PG.

If however there does exist some i such that v(i) − v0(i) and v0(i) do have different signs, then the signs of
vε(i) and v0(i) will be different for large values of ε. Hence, the entity

ε∗ = sup
ε>0

{〈
1̂, vε

〉
= ‖vε‖1

}
will be smaller than ∞. Due to continuity, it follows that

〈
1̂, vε∗

〉
= ‖vε∗‖1. Since

〈
1̂, vε

〉
6= ‖vε‖1 for values of

ε slightly larger than ε∗, there must exist some i0 so that vε(i0) changes sign as ε surpasses ε∗. In particular,
vε∗(i0) = 0.

7



(a) (b)

Figure 2: Illustration for the proof of Theorem 2.1. (a): Situation of the standard lattice Zd, which indeed fulfills
PG ⊆ (−1, 1)d. (b): Situation for a lattice GZd which does not fulfill PG ⊆ (−1, 1)d.

If v0(i0) = 0, then necessarily v(i0) 6= 0, since otherwise vε(i0) will be constantly equal to zero, contradicting
the change of sign in ε∗. But if v(i0) 6= 0, then vε∗(i0) = (1 + ε∗)v(i0) 6= 0, which is a contradiction. Therefore,
v0(i0) 6= 0, and consequently

‖vε∗ − v0‖∞ ≥ |vε∗(i0)− v0(i0)| = |v0(i0)| ≥ 1,

since v0 ∈ Zd. Again, by assumption on PG, as before this implies vε /∈ v0 + PG. The proof is finished.

The above theorem already covers the important case of the standard lattice, i.e., that G = I. In this case, we
have PG = Ω(Zd, 0) = [−1/2, 1/2]d, which is certainly contained in (−1, 1)d. Hence, in the case of the standard
lattice, Post-Projection will never enhance the recovery probability of Basis Pursuit!

It is, however, possible to further restrict the lattices for which Post-Projection has a chance of ’helping’
Basis Pursuit, which is the content of our next result. Part (i) studies sufficient conditions on the lattice GZd
such that Post-Projection never improves a unique solution. Part (ii) provides sufficient conditions on GZd for a
measurement matrix and a sparse vector to exist such that Post-Projection does help.

Theorem 2.2. Let v0 ∈ Zd and let G ∈ Rd,d be an invertible matrix.

(i) Suppose that, for each 1 ≤ ` ≤ s, PG does not contain any vectors of the form v + n, for which

(a) the supports of v and n are disjoint, and

(b) v is m-sparse and n ∈ Zd has exactly ` non-zero entries.

Then, for every s-G-sparse x0 ∈ GZd, there do not exist any matrices A ∈ Rm,d so that (P1,G) with b = Ax0

has a unique solution v̂ 6= v0 satisfying v̂ ∈ v0 + PG.

(ii) Suppose that there exists some ` ≥ 2 and a vector of the form v + n ∈ PG, for which v and n fulfill (a) and
(b). Then, for every m with m+ ` ≤ d, there exists a matrix A ∈ Rm,d and an `-G-sparse vector x0 ∈ GZd
such that (P1,G) with b = Ax0 has a vector v̂ 6= v0 as solution satisfying v̂ ∈ v0 + PG.

The proof of this result, which uses a geometrical characterization of matrices allowing signal recovery with
Basis Pursuit due to Donoho and Tanner [13], is postponed to the last section.
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3 Analysis of the PROMP algorithm

The important lesson of the last section is that the strategy of Post-Projection after Basis Pursuit is too simple
to really make use of the assumption that x0 lies on a lattice additional to being sparse. Therefore, we will in the
rest of the paper concentrate of the PROMP Algorithm 2, which was presented already in the introduction. Let
us briefly recall its two steps.

1. Support Approximation Step.
For given A ∈ Rm,d and b ∈ Rd, calculate

x̂ := argminx ‖x‖2 subject to Ax = b, (P2)

and use this solution to construct an approximation of the support of original signal x0 through

Sϑ =
{
i | |x̂(i)| ≥ m

d
ϑ
}

(2)

with ϑ ∈ (0, 1) carefully chosen.

2. Warm-Starting OMP Step.
Run OMP initialized with the support approximation Sϑ.

We will subsequently present a performance analysis of each of these steps. They will be independent, and
hence, they are also separately interesting. We will always assume that the measurement matrix A is random,
with the standard Gaussian distribution. This will be crucial in many arguments, and it should at this place be
explicitly noted that it probably is not trivial to generalize the results to other distributions.

3.1 Analysis of Support Approximation Step

We will divide the analysis of this step into two parts. First, we will focus on the accuracy of the selected support
set dependent on the number of measurements. Second, we will drive a stability analysis of this step.

3.1.1 Classification of Indices using `2-Minimization

Aiming to show that provided m is large enough, the Support Approximation Step of PROMP will produce a
reasonable estimation of suppx0, we will prove that, with high probability, Sϑ ∩ suppx0 will be large at the same
time as Sϑ ∩ (suppx0)c is small. The idea will be to investigate the distribution of the random variable x̂. Then
we will use a concentration of measure argument to argue that for each i ∈ [1, . . . , d], we have x̂(i) ≈ m/d · x0(i)
with high probability. This has the consequence that only the entries corresponding to indices i ∈ suppx0 can be
large in magnitude, which implies that Sϑ is a reasonable approximation of suppx0.

We have already noted that x̂ = ΠkerA⊥x0, where due to the Gaussianity of A, kerA⊥ is uniformly distributed
over the Grassmannian manifold of m-dimensional subspaces of Rd, in symbols kerA⊥ ∼ U (G(d,m)). It is thus
of major interest to investigate the distribution of ΠLx0, where L ∼ U (G(d,m)). The following lemma provides
a decomposition of that distribution, which is also interesting in its own right.

Lemma 3.1. Let d ≥ 2 and k ≤ d, fix x0 ∈ Sd−1 and let L ∼ U (G(d, k)). Then

ΠLx0 = R2x0 +R
√

1−R2Qx0
[θ, 0],

where

• R is distributed as the norm of ΠLx0.

• θ ∼ U
(
Sd−2

)
, independent of R. [θ, 0] ∈ Rd denotes the vector formed when extending θ with a zero element.

Also note that we understand S0 as the set {±1}.
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0

x0

θ ∼ U
(
Sd−1

)
R ∼ χk

ΠLx0 Figure 3: Illustration of the decom-
position in Lemma 3.1.

• Qx0
is any fixed orthogonal matrix with Qx0

ed = x0.

Proof. Let us first note that ΠLx0 is always an element of the sphere centered in x0/2 with radius 1/2. Indeed,
if (q1, . . . , qk) is an orthonormal basis of L, and (qk+1, . . . qd) is one of L⊥, we have

‖ΠLx0 − x0/2‖22 =

∥∥∥∥∥1

2

k∑
i=1

〈x0, qi〉 qi −
1

2

d∑
i=k+1

〈x0, qi〉 qi

∥∥∥∥∥
2

2

=
1

4
‖x0‖22 =

1

4
.

Due to the fact that Qx0
ed = x0, we have 〈x0, Qx0

[Θ, 0]〉 = 〈ed, [Θ, 0]〉 = 0 for every Θ ∈ Sd−2. Hence, if we
write ΠLx0 = λx0 + µQx0 [Θ, 0] for some λ, µ and Θ, we have

‖ΠLx0‖22 = λ2 + µ2,

1/4 = ‖ΠLx0 − x0/2‖22 = (λ− 1/2)2 + µ2.

Denoting R := ‖ΠLx0‖2, this system of equations only has the solutions

λ = R2 and µ = ±R
√

1−R2.

Therefore, if we define the map Λ : [0, 1]× Sd−2 → Rd, (ρ,Θ)→ ρ2x0 + ρ
√

1− ρ2Qx0
[Θ, 0], we will have ΠLx0 =

Λ(R, θ) for some variable θ distributed on the sphere.
It only remains to prove that R and θ are independent, and that θ ∼ U

(
Sd−2

)
. For this, it suffices to prove

that for each pair of Borel sets A ⊆ [0, 1] and B ⊆ Sd−2 with probability P (R ∈ A) > 0, we have

P (R ∈ A, θ ∈ B)

P (R ∈ A)
= σd−2(B), (3)

where P denotes the distribution of ΠLx0 and σd−2 the standard normalized surface measure of the sphere Sd−2.
It is clear that for each fixed A, the left hand side of (3) defines a probability measure on Sd−2. It is enough to
prove that this measure is uniformly distributed, since this uniqely defines the measure σd−2 (for a definition of
what is meant by uniformity of a distribution and a proof of the claim, see for instance [25, p.88]).

Towards this end, we first prove a symmetry of Π. If q ∈ O(d) is such that qx0 = x0, we have for every
M ⊆ Rd

P (ΠLx0 ∈ qM) = P (q∗ΠLqx0 ∈M) = P (Πq∗Lx0 ∈M) = P (ΠLx0 ∈M) , (4)

since L ∼ q∗L due to the uniform distribution. If we now denote with u an element of O(d − 1) (which we will
identify with the element of O(d) which acts on span(ed)

⊥ as does u on Rd−1, and leaves ed invariant), we have

Λ(ρ, uΘ) = ρ2x0 + ρ
√

1− ρ2Qx0
[uΘ, 0] = Qx0

uQ∗x0

(
ρ2x0 +

√
1− ρ2Qx0

[Θ, 0]
)
,

10



since Qx0
uQ∗x0

x0 = Qx0
ued = Qx0

ed = x0. Therefore, we have

P (R ∈ A, θ ∈ uB) = P (ΠLx0 ∈ Λ(A× uB)) = P
(
ΠLx0 ∈ Qx0

uQ∗x0
Λ(A,B)

)
= P (ΠLx0 ∈ Λ(A×B)) = P (R ∈ A, θ ∈ B) ,

where we used the symmetry (4) and that Qx0
u∗Q∗x0

x0 = x0. Consequently, the left hand side of (3) is invariant
under orthogonal transformations, i.e., uniformly distributed. This proves the claim.

With the help of this lemma, we will be able to calculate the expected value of each entry of x̂. In addition
to this, we will use a concentration of measure argument – concretely, we will use the following result.

Lemma 3.2. Let k ≤ d. If L ∼ U (G(d, k)) and F : G(d, k) → R is 1-Lipschitz, i.e., for K1,K2 ∈ G(d, k), we
have

|F (K1)− F (K2)| ≤ ‖ΠK1
−ΠK2

‖2 ,

then there exist constants C, a > 0 such that, for every t > 0,

P (F (L) ≥ E (F (L)) + t) ≤ C exp(−adt2) and P (F (L) ≤ E (F (L))− t) ≤ C exp(−adt2).

E (F (L)) is the expected value of the random variable F (L).

Since the proof of this result is relatively lengthy and uses fairly standard techniques, we postpone it to
Subsection 5.2. Let us instead apply it now to prove that the support approximation procedure (2) performs well
as long as m is large enough.

Theorem 3.3. Let x0 ∈ Zd be fixed, S0 = suppx0, ϑ ∈ (0, 1) with Sϑ as in (2), A a Gaussian matrix, and η > 0.
Further, let the solution of (P2) be denoted x̂ and C, a > 0 be the associated constants from Lemma (3.2). Then
the following hold.

(i) If i ∈ S0 and

m ≥

√
d ‖x0‖22

a (|x0(i)| − ϑ)
2 · log

(
C

η

)
,

then the probability that i /∈ Sϑ is smaller than η.

(ii) If i /∈ S0 and

m ≥

√
d ‖x0‖22
ϑ2a

· log

(
2C

η

)
,

then the probability that i ∈ Sϑ is smaller than η.

Proof. For i ∈ {1, . . . , d}, let ei be the i:th standard unit vector, and define the function

Gi : G(d,m)→ R, L 7→ 1

‖x0‖2
〈ΠLx0, ei〉 .

Then Gi is 1-Lipschitz, since

|Gi(L)−Gi(K)| ≤ 1

‖x0‖2
‖ΠLx0 −ΠKx0‖2 ≤ ‖ΠL −ΠK‖2 .

Let us next only prove the first claim (i), since the other claim is proven analogously. We start by calculating
the expected value of Gi as follows: Lemma 3.1 and the fact that kerA⊥ ∼ U (G(d,m)) imply that

Gi(kerA⊥) =

〈
ΠkerA⊥

(
x0

‖x0‖2

)
, ei

〉
= R2

〈
x0

‖x0‖2
, ei

〉
+R

√
1−R2

〈
Qx0/‖x0‖2 [θ, 0], ei

〉
,

11



where we adapted the notation of said lemma. Now, due to symmetry, we have

E
(〈
Qx0/‖x0‖2 [θ, 0], ei

〉)
= E

(〈
[θ, 0], Q∗x0/‖x0‖2

ei

〉)
= 0.

It is furthermore well-known that E
(
R2
)

= m/d. Hence,

E (Gi) =
m

d ‖x0‖2
〈x0, ei〉 .

Now let us without loss of generality assume that x0(i) > 0. Then necessarily x0(i) ≥ 1, and x0(i) − ϑ > 0.
Using the concentration result Lemma 3.2, we can deduce that

P (i /∈ Sϑ) = P
(
|x̂(i)| ≤ m

d
· ϑ
)
≤ P

(
‖x0‖2Gi ≤

m

d
· ϑ
)

= P
(
Gi − E (Gi) ≤

m

d ‖x0‖2
· (ϑ− x0(i))

)
≤ C exp

(
−ad

(
m

d ‖x0‖2
· (ϑ− x0(i))

)2
)
≤ η,

provided m satisfies the assumption of the theorem.

Note that the above result bounds the probability that an index is classified correctly by our proposed proce-
dure separately for each index. It is, however, also possible to prove a more ”global” statement. To formulate it,
it is convenient to define

‖x‖−∞ := min
i:x(i)6=0

|x(i)| for each x ∈ Rd.

Please note that although the notation might indicate that ‖·‖−∞ is a norm, it is not even a quasi-norm.

Theorem 3.4. Let x0 ∈ Zd be supported on S0, A ∈ Rm,d be Gaussian, and Sϑ be defined as above. Let further
n1 and n2 be positive integers, and τ > 0. There exist continuous functions ϑ− and ϑ+ defined on R+ × N × N
and universal constants D and b such that, if ϑ−(τ, n1,m) ≤ ϑ ≤ ϑ+(τ, n2,m), we have

P (|Sϑ ∩ Sc0| ≤ n1 ∧ |Scϑ ∩ S0| ≤ n2) >
(
1− exp

(
−bmτ2

))(
1−D

((
d− |S0|
n1

)
+

(
|S0|
n2

))
exp

(
−bmτ2

))
.

We furthermore have

ϑ−(0, n1,m) =

√(
d

m
− 1

)
1

d
, ϑ+(0, n2,m) = ‖x0‖−∞ −

√(
d

m
− 1

)
d

d− 1

Γ
(
d
2

)
Γ
(
d+1

2

) (√log n2 +

√
2

π

‖x0‖∞
‖x0‖2

)
.

The functions ϑ− and ϑ+ are explicitly specified in the proof, which we postpone to Subsection 5.3. The idea
of the proof is to use Lemma 3.1 and some standard high-dimensional geometry arguments.

3.1.2 Stability

In applications, it is of course crucial that the selection procedure is stable, in the sense that is not to any great
extent affected by noise in the measurements. We now show that PROMP is stable in this sense. The key to its
proof will be the following lemma.

Lemma 3.5. Let A ∈ Rm,d be a Gaussian matrix with d = (1 + δ)m and n ∈ Rm be fixed. Further, let ρ̂ be the
solution of the problem

min ‖ρ‖2 subject to Aρ = r.

12



Then the distribution of ρ̂ is rotational invariant. Furthermore, there exist c1, c2, c̃1 and c̃2 such that, if we have
δ ≥ c̃1/ log(c̃2d), then

P
(
‖ρ‖2 ≤

‖r‖2
c1
√
d

)
≥ 1− exp(−dc2).

All constants are universal except for c1 which is only dependent on δ.

Proof. In order to prove that the distribution of ρ is rotational invariant, take q to be an orthogonal matrix. Then
qρ̂(A) = ρ̂(Aq∗). Since A ∼ Aq∗, consequently qρ̂(A) ∼ ρ̂(A), i.e., we have rotational invariance.

To show the second claim, it suffices to notice that ρ ∈ kerA⊥. This then implies that

‖r‖2 = ‖Aρ‖2 ≥ σmin(A) ‖ρ‖2 ,

and the claim follows immediately from [28, Theorem 3.1] about the distribution of the singular values of Gaussian
matrices.

Now we may easily prove stability.

Theorem 3.6. Let x0 ∈ Zd, let A ∈ Rm,d be Gaussian with d = (1 + δ)m, let r ∈ Rm satisfy ‖r‖2 ≤ σ
√
m, let

Ĉ > 0 be arbitrary, and let ϑ ∈ (Ĉσ, 1− Ĉσ). Then there exist constants c1, c2, c̃1 and c̃2, C and a, all universal
except for c1 which only depends on δ, such that, if

(i) d ≥ max{c2/ log(6/η), (1 + δ)
√

2/(e
√
πĈ2c21 log(6/η))} and

(ii) δ ≥ c̃1/ log(c̃2d),

we have, for i ∈ S0,

m ≥

√
d ‖x0‖22

a(|x0(i)| − ϑ− Ĉσ)2
· log

(
6C

η

)
⇒ P (i /∈ Sϑ) ≤ η

and, for i /∈ S0,

m ≥

√
d ‖x0‖22

a(ϑ− Ĉσ)2
· log

(
12C

η

)
⇒ P (i ∈ Sϑ) ≤ η.

Proof. We only prove the first claim, since the second is proved similarly. For this, we first observe that, since
the solution of (P2) is linearly independent of b, we have

x̂ = ΠkerA⊥x0 + ρ̂,

where ρ̂ is the solution of (P2) with b = r. We may proceed exactly as in the proof of Theorem 3.3 to show that if

m satisfies the assumed bound, we have 〈ΠkerA⊥x0, ei〉 ≤ m/d · (ϑ− Ĉσ) with a probability less than η/6. Hence,
if we prove that the probability that |〈ρ̂, ei〉| ≥ Ĉσ is smaller than 5η/6, the theorem follows immediately.

To show |〈ρ̂, ei〉| ≥ Ĉσ, first notice that Lemma 3.5 implies ρ̂ = λθ, where θ ∼ U
(
Sd−1

)
and λ ≤ ‖n‖2 /(c1

√
d)

with a probability greater than exp(−c2d). A standard concentration of measure argument (see for example
[3, Theorem 14.3]) shows that for every 1 > t > 0, we have |〈θ, ei〉| ≤ t with a probability greater than 1 −
e
√
π/2 exp(−dt2/2). Choosing t =

√
d/mĈc1, we arrive at

|〈ρ̂, ei〉| ≤
tσ
√
m

c1
√
d

= Ĉσ

with a complimentary probability smaller than exp(−c2d) + e
√
π/2 exp(−d(1 + δ)Ĉ2c21/2). The assumptions (i)

and (ii) imply that this number is smaller than 5η/6, completing the proof.

Remark 3.7. The careful reader might have already noticed that the arguments in this subsection only use the
integer-valuedness of the signal x0 in the sense that it secures that ‖x0‖−∞ ≥ 1. Hence, the technique of forming
a support estimate with `2-minimization and thresholding will work just as well for any signal with this property.
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3.2 Analysis of Warm-Starting OMP Step

In this section, we aim to analyze the impact an initial support approximate has on the OMP algorithm. Let us
first note that as soon as OMP has found a support approximation S which includes all the indices S0, while at
the same time having a size which is smaller than the number of measurements m, the minimization procedure
minsupp x⊆S ‖Ax− b‖2 will have the unique solution x0. This is due to the fact that the columns (ai)i∈S of the
Gaussian matrix A almost surely will be linearly independent. Hence, if we prove that the OMP -steps (line 6 to
8 in Algorithm 2) will pick indices i ∈ S0, we will successfully recover our signal as long as the initial support
estimate is not too large.

A famous criterion for OMP to successfully recover the support of an s-sparse signal involves the mutual
coherence µ of the matrix A. If ai, i = 1, . . . , d denote the columns of the matrix, it is defined by1

µ(A) := sup
i 6=j
|〈ai, aj〉|

If A has normalized columns, a sufficient criterion for OMP to recover all s-sparse signals in s-iterations is that
µ(2s− 1) < 1 [18, p.123-124].

It is possible – with a proof technique similar to the result mentioned above – to show a corresponding criterion
for the situation that OMP is initialized with a set S. For this, let us first define a new version of the mutual
coherence.

Definition 3.8. Let A ∈ Rm,d have the columns ai, i = 1, . . . , d and S ⊆ [1, . . . , d]. The S-coherence µS of A is
defined by

µS(A) = sup
j 6=k

∣∣∣〈ΠranA⊥S
aj ,ΠranA⊥S

ak

〉∣∣∣ ,
where AS denotes the matrix formed by the columns (ai)i∈S.

Remark 3.9. It is sufficient to consider j, k /∈ S, since aj ∈ ranAS for j ∈ S and, therefore, ΠranA⊥S
aj = 0.

We may now formulate and prove a criterion for the success of the OMP -step in PROMP .

Theorem 3.10. Let x0 ∈ Rd have the support S0 and A ∈ Rm,d have the columns ai, i = 1, . . . , d. Denote the
current support estimate of OMP with the measurements b = Ax0 by S, and set

I := {i /∈ S : |x0(i)| = ‖x0|Sc‖∞} .

Then the next step of OMP will pick an index in S0, if

max
i∈I

∥∥∥ΠranA⊥S
ai

∥∥∥2

2
≥ µS(2 |S0\S| − 1). (5)

Proof. Given the support estimate S, we know that the current signal estimate x satisfies Ax = ΠranASb. This
means that the current residual ρ satisfies

ρ = b−Ax = ΠranA⊥S
b =

∑
j∈S0

x0(j)ΠranA⊥S
aj ,

since b = Ax0 and x0 =
∑
j∈S0

x0(j)ej . Hence, using ΠranA⊥S
aj = 0 for j /∈ S

〈ρ, ak〉 =
∑
j∈S0

x0(j)
〈

ΠranA⊥S
aj ,ΠranA⊥S

ak

〉
=

∑
j∈S0\S

x0(j)
〈

ΠranA⊥S
aj ,ΠranA⊥S

ak

〉
.

1Some authors choose to normalize the columns. We however do not, since this approach will enable an analysis of the impact of
the initialization with S.
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Thus we have

〈ρ, ak〉 =


0 : k ∈ S,

x0(k)
∥∥∥ΠranA⊥S

ak

∥∥∥2

2
+
∑
j∈S0\(S∪{k}) x0(j)

〈
ΠranA⊥S

aj ,ΠranA⊥S
ak

〉
: k ∈ S0\S,∑

j∈S0\S x0(j)
〈

ΠranA⊥S
aj ,ΠranA⊥S

ak

〉
: k /∈ (S ∪ S0).

Denoting M := maxi∈I |x0(i)| and i0 := argmaxi∈I |x0(i)|, this implies that∣∣∣〈ak,ΠranA⊥S
b
〉∣∣∣ ≥M ∥∥∥ΠranA⊥S

ak

∥∥∥2

2
−M(|S0\S| − 1)µS : k = i0,∣∣∣〈ak,ΠranA⊥S

b
〉∣∣∣ ≤M |S0\S|µS : k /∈ I.

Therefore, i0 will be chosen prior to any index in Ic. In particular, since I ⊆ S0, OMP will choose an index in
the support of x0, which we aimed to prove.

Next we aim to investigate the probability that a Gaussian matrix A ∈ Rm,d fulfills 5, depending on S and
S0. For this, we require the following lemma, which is interesting in its own right.

Lemma 3.11. Let S ⊆ [1, . . . , d] with |S| ≤ m be given, and let A ∈ Rm,d and Ã ∈ Rm−|S|,d−|S| be Gaussian
matrices. Let further F be a measurable function on Rm,d−|S| which is left-invariant under orthogonal transfor-
mations, i.e., if q ∈ O(m), then F (qA) = F (A). Then

F
(

(ΠranA⊥S
aj)j /∈S

)
∼ F (Ã),

where we identified Ã with the matrix formed when concatenating it with |S| zero rows.

Proof. Without loss of generality, we may assume that S = [d−|S|+ 1, . . . , d], and therefore use the same indices
for the vectors ΠranA⊥S

aj and ã`. Because of the Gaussianity of A, ranA⊥S is uniformly distributed over the

Grassmannian G(m,m − |S|) of (m − |S|)-dimensional subspaces of Rm, and also ranA⊥S |= (aj)j /∈S , where we
used the notation |= to indicate that the two variables are independent. Therefore, we only have to show that

given ranA⊥S , the conditional distribution of F
(

(ΠranA⊥S
aj)j /∈S

)
is equal to the one of F (Ã).

For this, fix ranA⊥S =: L ∈ G(m, k) (with k = m − |S|) and let q be an orthogonal matrix with qLk = L,
Lk = span(e1, . . . , ek). Then, using the fact that, since aj is Gaussian, qaj ∼ aj and ΠLkaj ∼ ãj , and also
identifying ãj ∈ Rm−|S| with the vector in Rm formed when concatenating ãj with zeros, we have

ΠLaj = qΠLkq
∗aj ∼ qΠLkaj ∼ qãj .

It is also trivial that the family (ΠLaj)j /∈S is independent, as is (qãj)j /∈S . Hence,

(ΠLaj)j /∈S ∼ (qãj)j /∈S .

The claim now follows from the left-invariance of F .

Remark 3.12. Some examples of entities of matrices A ∈ Rm,d−|S|, which are left-invariant under orthogonal
transformations, are

• their mutual incoherence, as well as the norms of their columns,

• their kernels,

• their singular values.

With the help of the last lemma, it is now possible to investigate with which probability a Gaussian matrix A
fulfills (5). Let us state the result.
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Theorem 3.13. Let S ⊆ [1, . . . , d] with |S| ≤ m be given, and let A ∈ Rm,d a Gaussian matrix. Then there exist
constants C, a > 0 such that, for every η > 0, the probability that A fulfills (5) is larger than 1− η, provided that

m ≥ |S|+

(
2 |S0\S|

√
|I|+ 1

2
√
|I|

)2

· log

(√
π
2 d̃(d̃− 1) + d̃

η

)
,

where d̃ = d− |S|.

The proof is quite technical and therefore postponed to Subsection 5.4. The main idea of it is as follows: By
Lemma 3.11 and Remark 3.12, it suffices to bound the probability that

max
i∈I
‖ãi‖22 ≥ µ(Ã)(2 |S0\S| − 1), (6)

where Ã ∈ Rm−|S|,d̃ is Gaussian.
It is a standard measure concentration result that the norm of a Gaussian vector in Rn typically will have

squared norm equal to n. Hence, the left hand side of (6) will usually be about m̃ = m− |S|.
To take care of the right hand side, notice that

µ(Ã) = sup
j 6=k
‖ãj‖2 ‖ãk‖2 |〈θj , θk〉| ,

where (θj) = (ãj/ ‖ãj‖2) is an independent family of vectors, each one uniformly distributed over the sphere.
The product ‖ãj‖2 ‖ãk‖2 will again typically be smaller than m̃, and each scalar product |〈θj , θk〉| will – again

according to classical measure of concentration results – with high probability be smaller than 1/
√
m̃. The

fact that these bounds need to hold for d̃ vectors and d̃(d̃ − 1)/2 scalar products causes an extra multiplicative
log(d̃)-term. Summarizing, µ(Ã) ≈ m̃ log(d̃)/

√
m̃, and (6) is hence fulfilled when

m̃ ≥ m̃ · log(d̃)√
m̃
· (2 |S0\S| − 1), i.e.

m ≥ |S|+ (2 |S0\S| − 1)2 log2(d̃),

which almost is the claim of the theorem. A more thorough analysis will produce the actual result.

Remark 3.14. Let us already now remark that these considerations give a theoretical argument why a warm start
should enhance the recovery probability. Taking S = ∅ (for which the theorem still is valid), it follows that we

require O(|S0|2 log(d)) measurements to secure the recovery probability of a signal supported on S0 using OMP .
The square-term is not surprising, and is related to the so called square-root bottleneck [30]. With the initial

support estimate S, we will instead need O(|S|+ |S\S0|2 log(d)) measurements to secure recovery. This expression
grows significantly provided S ≈ S0.

It is however possible to prove a stronger recovery result. In [43], the authors prove that it actually suffices
to use m & C |S0| log(d) measurements in order to with great probability recover a signal supported on S0 with
the help of OMP . This result can be generalized to our setting in a similar manner.

Theorem 3.15. Let S ⊆ [1, . . . , d] with |S| ≤ m − |S0\S| be fixed, and let A ∈ Rm,d be Gaussian. Let further
x0 ∈ Zd be supported on the set S0 and η > 0. Then there exists a constant K such that the probability that OMP
warm-started with the index set S will recover x0 from the measurements b = Ax0 is larger than 1− η provided

m ≥ |S|+K |S\S0| log

(
d− |S|
η

)
.

Moreover, K can always be chosen smaller than 16.

The idea of this proof (which is from [43]) is less intuitive than the one of the above result, and we choose to
fully postpone the presentation of it to Subsection 5.5.
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4 Numerical Experiments

In this section, we empirically investigate the performance of PROMP and OMP . We will begin by comparing
the recovery probabilities of OMP and PROMP when they are fed with exact measurements. Then we will
investigate the effect of noise on the performance of PROMP .

In the spirit of reproducible research, we have made the code used in the experiments available as an open
source MATLAB software package. It can be downloaded from https://www.math.tu-berlin.de/afg/.

4.1 Exact Recovery

We start by numerically testing the recovery probability for PROMP and OMP without noise. The experiment
was conducted as follows: For each sparsity level s and number of measurements m from 1 to 100 (= ambient
dimension), we ran 1000 experiments. In each of those, we drew a support of size s uniformly at random, and

chose the elements on that support equal to 1 to form the vector x0 (i.e., we are working with vectors in {0, 1}d).
Then we calculated b = Ax0 and ran both PROMP and OMP to estimate x0. Since the elements of the original
vectors are all positive, we also tested the recovery probability, if the elements to form the support approximation
were chosen as the ones which were larger than d/m · 1/2 (as opposed to larger than d/m · 1/2 in modulus). A
success was declared when the Euclidean distance between the estimate x and the true signal x0 was at most
0.001 (which corresponds to a relative error between 0.1− 1‰, depending on the sparsity).

In the left hand diagrams of Figure 4, the success probability of PROMP (including the successes already
in the preconditioning step) to OMP are compared. As can be seen, the phase transition region is pushed
downwards by the `2-preconditioning, in particular, in the case when the sparsity is not too small. When the
index classification procedure specialized for positive signals is used, the phase transition region is pushed even
further down.

Another gain when using PROMP instead of OMP is the reduction of required computation time. In the
right hand diagrams of Figure 4, the average time needed for a successful execution is plotted for OMP as well as
for PROMP (with the original index classification procedure), respectively. Certainly, a non-successful execution
already requires extensive computational time, since unless a sparse solution is found at an early stage, many
iterations are necessary to find a solution at all. One should also point out that there is a larger statistical
instability on the borderline to the white area in which no attempts actually succeeded; on the borderline only
a few attempts succeeded and hence only a few execution times were recorded. We further wish to emphasize
that since we have chosen the same scale (ranging from 0 to 0.001 seconds) for the figures, the vast superiority of
PROMP compared to OMP for large sparsity levels can not be captured by them. As an example, a successful
attempt of PROMP for s = 70, m = 95 was averagely taking 0.024 seconds, whereas PROMP (with and without
positivity specialized support) only needed an average of 0.0012 seconds. It should also be mentioned that no
efforts whatsoever where made in order to increase the speed of OMP , e.g., by using QR-decompositions to solve
the `2-minimization problem, but instead literally does what the pseudo code Algorithm 1 says.

Since the introduction of OMP , many modifications of this sparse recovery algorithm have been presented.
In order to incorporate PROMP in this larger context, we chose to also present a comparison with two of these
modifications, namely CoSaMP [32] and OMPR (Orthogonal Matching Pursuit with Replacement) [22]. For
each of the two algorithms, we ran experiments similar to the ones above, and checked for each sparsity level how
many measurements were needed to secure a recovery probability above 90%.

We then tested to which extent the CoSaMP and OMPR can be improved by using the Support Approxima-
tion Step of PROMP . For this, we performed the same test for ”pre-projected” versions of the two algorithms,
i.e., we warm-started each algorithm with the set Sϑ, again with ϑ = 1

2 . The resulting algorithms are called
CoSaPROMP and PROMPR below.

The results of the experiments are shown in Figure 5. One can see that with the exception of CoSaMP for
sparsities up to about 35, PROMP performs comparably good or even better than all of the other algorithms.
We also see that the pre-projection procedure enhances the recovery probabilities of both OMPR and CoSaMP .

The curves corresponding to CoSaMP and CoSaPROMP make a sudden jump downwards at a sparsity of
about s = 25. As can be seen in Figure 6, there seems to be a ”sweet spot” when the number of measurements m
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Figure 4: Left, from top: Recovery probabilities OMP , PROMP without and and with positivity specialized
support. Right, from top: Average time needed to successfully execute OMP , PROMP without and and with
positivity specialized support. Scale ranges from 0 to 3 · 10−3 seconds.

is slightly larger than s, where CoSaMP performs better than when m is both larger and smaller than this value.
In our opinion, there seem to not be a simple explanation of this effect, which could be an interesting question
for future research.

Let us end with a few more comments about the way CoSaMP and OMPR were applied:

• Both algorithms need knowledge of the sparsity of the signal, which we provided exactly (i.e., in the exper-
iments with s-sparse signals, we gave the algorithm exactly s as sparsity parameter, except for CoSaMP
in some cases, see below.).

• The CoSaMP -algorithm consists of iteratively constructing 2s-sparse signals, which are then thresholded
to s-sparse signals. This makes it unclear how it should be applied to signals with sparsity greater than d

2 .

We chose to simply set the sparsity equal to d
2 in this case.

• OMPR needs to be initialized with an s-sparse signal. We chose this signal to be the one consisting of the
s largest entries of the least squares solution to Ax = b.
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Figure 5: Curves representing the number of measurements needed to obtain a recovery probability of 90% for
each sparsity for different algorithms. .
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Figure 6: The behaviour of CoSaMP and CoSaPROMP.

4.2 Stable Recovery

We first study the effect of noise on the Support Approximation Step of PROMP . For the experiment, we chose
the ambient dimension to be equal to d = 100 and the sparsity to be s = 10. For each m = 10, 20, . . . , 90 as
well as m = 91, 92 . . . 100, a signal x0 was chosen in the same manner as before. For each m, we let PROMP
run 10000 times, one time without noise and one time with noise. The noise was chosen uniformly at random on
the sphere Sm−1 with radius 0.1 · ‖b‖2, i.e., corresponding to a relative noise level of 10%. For each experiment,
the sizes of S ∩ S0 and S ∩ Sc0, i.e., the number of chosen indices which were correct and false, respectively, were
recorded. The results are depicted in Figure 7.

We observe that as long as m is not too large, a relative noise level of 10% is really not much of an issue
for PROMP in this situation, both with and without the positivity specialized index choice procedure – the
number of correctly, and incorrectly, respectively, chosen indices are not affected to any great extent. If however
m ≈ d, we really do experience problems, as was anticipated by Theorem 3.6. We also find an explanation why
PROMP is not outperforming OMP for small sparsities. The theorems in Subsection 3.2 concerning the recovery
probability of OMP initialized with a set S make the assumption that S is not too large – the figure shows that
this assumption typically is not met for small sparsities and the threshold 1/2.

Next, we investigate how different noise levels affect the performance of OMP and PROMP , respectively.
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Figure 7: Top row, left to right: |S ∩ S0| depending on m and the presence of noise for the normal index
classification procedure and for the positivity specialized procedure. Bottom row, left to right |S ∩ Sc0| depending
on m and the presence of noise for the normal index classification procedure and for the positivity specialized
procedure.

Here we fixed d = 100, s = 10 and m = 50.For these values of m and s, when recovering from exact measurements,
OMP has a recovery probability of about 92%, PROMP about 98%, and PROMP with positivity specialized
support about 99%, respectively, according to the experiments in the last section. The signal x0 and the support
estimate S was chosen as before. Then for each relative noise level 0, 0.01, 0.02, . . . , 1, we performed 10000 OMP ’s
and PROMP ’s to recover x0. We chose to terminate the orthogonal matching pursuits, both in PROMP and
in OMP , when ‖Ax− b‖2 dropped below ‖n‖2, or after at most 15 iterations. After the algorithms had ran, we
rounded off (post-projected) the answers and recorded how many entries in the solution vector x̂ were different
from the ones in x0. The mean number of false entries depending on the noise level is depicted in Figure 8(a).

It is evident from the figures that PROMP , especially with the positivity specialized index choice procedure,
outperforms OMP by a large margin, at least for small noise levels. The reason of why OMP starts to work
better for large noise levels is our choice of termination criterion for orthogonal matching pursuits, in OMP as
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well as in PROMP . Since the OMP -step in PROMP is started with a support estimate already containing
some false indices (in this setting, typically around 15-20 for the standard , and 5-10 for the positivity specialized
index classification proceudere, respectively, see Figure 7), it will have the chance to choose more false indices
before it is artificially stopped compared to the original OMP . We also remark that for noise levels up to about
.06, or even .16 for the positivity specialized support, the noise is not affecting the performance significantly at
all. This is due to the fact that we are post-projecting.
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Figure 8: (a): The mean number of false indices depending on relative noise level for OMP and PROMP , with
and without positivity specialized index choice procedure. (b): The difference between the mean value at each
level of relative noise and the mean value without noise for OMP and PROMP , with and without positivity
specialized index choice procedure.

One issue to be taken into account is that OMP and PROMP have different recovery probabilities from
exact measurement for these values of s and m, which is the main reason why the mean value of false entries is
larger for OMP . But also when we plot the difference between the mean value at each noise levels to the mean
value at SNR = 0 for SNR = 0, 0.01, . . . , 0.2 in Figure 8(b), we notice that both variants of PROMP also in
this sense perform better than OMP .

5 Proofs

5.1 Proof of Theorem 2.2

The key to proving Theorem 2.2 is [13, Thm. 1], which states that for signals with positive entries, uniform
recovery of all k-sparse signals in Rd is equivalent to the image of the d-simplex P = {x|x ≥ 0, ‖x‖ = 1} under
the linear map A being a k-neighborly polytope with d vertices. Recall that a k-neighborly polytope is defined
to be a polytope for which the convex hull of any set of k of its vertices forms a (k − 1)-face of the polytope.
A more simple way to phrase this equivalent condition is that each (k − 1)-face of P should be mapped onto a
(k − 1)-face of AP .

The authors also briefly mention that the same reasoning can be applied to the `1 unit ball (cross-polytope)
T d when dealing with recovery of general sparse signals. It is furthermore possible to state and prove, again
using the same techniques as in the mentioned paper, a local version of the theorem, which we will need. For
completeness purposes, we include a proof. We will use some basic well-known results from convex geometry,
which can be found in, e.g., [21].

Lemma 5.1. Consider the problem (P1) with G = id and b = Ax0, where x0 ∈ Rd, x0 6= 0 and A ∈ Rm,d.
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(i) If (P1) has the unique solution x0, then x0/ ‖x0‖1 lies in the relative interior of an s-face F of T d which is
mapped by A onto an s-face AF of AT d.

(ii) If x0/ ‖x0‖1 lies in the relative interior of an s-face F of T d which is mapped by A onto an s-face AF of
AT d, and AF has the additional property that only the columns aj of A contained in AF are the images of
the vertices of F under A, then x0 is the unique solution of (P1).

In particular, if x0 is a unique solution to (P1), x0 has to be m-sparse.

Proof. Let us again stress that the idea of this proof is taken from [13, Thm. 1]. For the sake of brevity, define
the polytope Q := AT d. We will subsequently without loss of generality assume that ‖x0‖1 = 1. Consequently,
x0 ∈ relintF for some s-face F of T d, i.e., there exist subsets I+, I− of [1, . . . , d] with |I+ ∪ I−| = s + 1 as well

as positive scalars θi with
∑d
i=1 θi = 1 and θi > 0 for all i ∈ I+ ∪ I− such that

x0 =
∑
i∈I+

θiei −
∑
i∈I−

θiei.

(i) If x0 is the unique solution to (P1), then

b =
∑
i∈I+

θiai −
∑
i∈I−

θiai (7)

is the only way of writing b as a convex combination of the columns of A (the coefficients of any other convex
combination corresponds to another solution of (P1), which contradicts the assumption that x0 uniquely solves
P1). This immediately implies that the set (ai)i∈I+ ∪ (−ai)i∈I− is affinely independent.

We claim that this also implies that conv((ai)i∈I+ ∪ (−ai)i∈I−) is a subset of the relative boundary of Q.
Towards a contradiction, assume this is not true. Then there would exist some b̃ ∈ AF ∩ relintQ, consequently
with two representations as convex combinations of the ai:

b̃ =
∑
i∈Ĩ+

θ̃iai −
∑
i∈Ĩ−

θ̃iai =

d∑
j=1

ϑ+
j aj −

d∑
j=1

ϑ−j aj

with Ĩ± ⊆ I± and where both the θ̃i and ϑ±i sum up to 1. Furthermore, all indices θ̃i, i ∈ Ĩ+ ∪ Ĩ− and ϑ±j ,
j = 1, . . . d are strictly positive. This yields an affine combination of the ai equal to 0, where the coefficents
corresponding to indices i /∈ I+ ∪ I− are positive. Adding a small multiple of this combination to (7) again yields
an alternative way of expressing b as a convex combination of the ai, which is a contradiction.

Since AF = conv((ai)i∈I+∪(−ai)i∈I−) is contained in the boundary, there exists a s-face G of Q with AF ⊆ G.
A dimensionality argument shows that for every vertex v of G, there exists an ai, i ∈ I+∪I− whose representation
as a convex combination of the vertices of G have a positive weight on v. If this v does not equal ai, this convex
combination can be used, just as above, to produce an alternative representation of b. Therefore, the vertices of
AF and G are the same, i.e., AF = G. The theorem is proved.

(ii) The fact that AF = conv((ai)i∈I+ ∪ (−ai)I−) is an s-face of Q immediately implies that the set (ai)i∈I+ ∪
(−ai)I− is affinely independent – otherwise, the face could not have been s-dimensional. Now assume, towards a
contradiction, that x0 is not the unique solution of (P1). Then there exists a tuple of nonnegative scalars (ϑj)j
not equal to (θi)i and disjoint subsets J+ and J− of [1, . . . , d] such that

b =
∑
j∈J+

ϑjaj −
∑
j∈J−

ϑjaj , (8)

where
∑d
j=1 ϑj ≤ 1 and ϑj > 0 for all j ∈ J+ ∪ J−.

Now, since AF is a face of Q, there exists a functional c and a scalar γ with

〈c, x〉 ≤ γ for all x ∈ Q and 〈c, x〉 = γ for all x ∈ AF.
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Figure 9: The construction of the matrix S
in the proof Theorem 2.2(ii).

Since b ∈ AF , we have 〈c, b〉 = γ. Testing equation (8) with c implies that 〈c,±aj〉 = γ for each j ∈ J± as well
as
∑
j∈J+∪J− ϑj = 1. By the additional assumption regarding the columns of A, we obtain 〈c,±ak〉 < γ for all

k /∈ J+ ∪J−, and hence I± = J±. Since the set (ai)i∈I+ ∪ (−ai)I− is affinely independent, this implies that (ϑj)j
can not be disjoint from (θi)i after all, a contradiction. Hence, x0 is the unique solution of (P1).

To prove the ”in-particular”-part, we use (i) to conclude that any solution x̂ of (P1) must lie in an s-face
(ei)i∈I+ ∪ (−ei)I− with I+ ∩ I− = ∅ of T d, which is mapped to an s-face of Q. Since Q ⊆ Rm, all faces of Q
have dimension at most m, and hence s ≤ m. To rule out the possibility s = m (which corresponds to x̂ being
(m+ 1)-sparse), note that in this case, AF = Q. In particular, (ai)i∈I+ ∪ (−ai)I− would be exactly the vertices
of Q. This is however possible, since if ai is a vertex of Q, −ai will also be one by symmetry. Hence I+ and I−

cannot be disjoint, which is a contradiction.

With this lemma, we may now prove the theorem.

Proof of Theorem 2.2. (i) Let x0 ∈ GZd be s − G-sparse and v̂ be the unique solution of (P1) with b = Ax0.
Assume that v̂ 6= v0, but still v̂ ∈ v0 + ΩP . By Lemma 5.1, v̂ has to be m-sparse. Therefore, if the length of the
intersection of supp v̂ and supp v0 equals k, we can conclude that v0 − v̂ is a vector of the form described by (a)
and (b) with ` ≤ s− k. To be precise, using the notation of the theorem, we have

v(i) =

{
v0(i)− v̂(i) : i ∈ supp v̂,

0 : else,
and n(i) =

{
v0(i) : i ∈ supp v0\ supp v̂,

0 : else.

It is only left to prove that it is sufficient to consider only ` > 0. For this, suppose that there exist m-sparse
vectors in ΩP , but none of them can be decomposed as described by (a) and (b). This, in particular, implies that
there do not exist any vectors with `∞-norm greater or equal to 1 in ΩP – if there were, by scaling, (remember
that ΩP is a convex polytope containing the origin) we would find a vector with `∞-norm equal to 1, i.e., a vector
containing a 1, which would then be a vector of the form given by (a) and (b).

However, if there do not exist any vectors with `∞-norm greater or equal to 1 in ΩP , already Theorem 2.1
tells us that there can not exist an x0 as described above.

(ii) Let v + n ∈ ΩP , where v and n fulfill (a) and (b), and assume without loss of generality that supp v =
[1, . . . ,m] and suppn = [m+ 1, . . . ,m+ `]. We now construct the matrix S = AG as follows, and then just define
A to be SG−1.

First, we choose the m first columns si of S to be linearly independent vectors such that (±si) are the vertices
of a centrally (m−1)-neighborly polytope Q, meaning that each set of m vectors ±si not containing an antipodal
pair spans an m− 1-face of Q. One possible choice is to set si = ei for each i.

Next define s := Sv and put sj := −s/(`n(j)) for j = m+ 1, . . . ,m+ `. We claim that each such column can
not be an element of a face F of ‖v‖1Q. To see this, let a and α be such that 〈a, x〉 ≤ α for all x ∈ ‖v‖1 ·Q and
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〈a, x〉 = α for all x ∈ F . Due to the linear independence of the si, i = 1, . . . ,m, 0 /∈ F and hence α 6= 0. Since
〈a, s〉 ≤ α, we have ∣∣∣∣〈a,− s

`n(j)

〉∣∣∣∣ ≤ 1

2
|〈a, s〉| ≤ |α|

2
< α,

since ` ≥ 2 and |n(j)| ≥ 1 for each j, and thus −s/(`n(j)) /∈ F for all j = m+ 1, . . .m+ `.
Finally, fill the rest of the columns of S with vectors in the interior of Q, which then ensures the following

conditions to be satisfied:

• v/ ‖v‖1 lies in the relative interior of an k-face F of T d which is mapped onto a k-face SF of Q = ST d by
S (due to the centrally m-neighborliness of Q).

• There do not exist any columns in S other than the images of the vertices of F under S contained in the
face SF .

• b := s = Sv = −Sn is an element of that face.

Lemma 5.1(ii) therefore implies that the unique solution of (P1,G) with b = Sv = −Sn has the unique solution v,
which is not equal to −n, but still v + n ∈ ΩP . This concludes the proof.

5.2 Proof of Lemma 3.2

In this subsection, we aim to prove Lemma 3.2. We will mainly use classical results on measure concentration in
metric measure spaces, as presented in the monograph [27]. Let us begin with some useful definitions.

Definition 5.2. [27, p.3] A metric space (X, d) equipped with a probability measure µ defined on its Borel σ-
algebra B(X) is called a metric measure space. Given such a space, the concentration function α(X,d,µ) is defined
by

α(X,d,µ)(r) = sup

{
1− µ(Ar) | µ(A) ≥ 1

2

}
,

where for any set A ⊆ X and r > 0, Ar denotes the set {x ∈ X|dist(x,A) < r}.

If the concentration function of a metric measure space (X, d, µ) is rapidly decaying, 1-Lipschitz functions will
be concentrated around their means, i.e., the probability that |F − E (F )| > ε will be small. The exact statement
reads as follows:

Theorem 5.3. [27, p.10] Let X be a metric measure space with concentration function α. Suppose that α(r) ≤
C exp(−arp) for some C, a and p > 0. Then there exist C ′, a′ > 0 such that for each 1-Lipschitz function F , we
have

µ (F ≥ E (F ) + r) ≤ C ′ exp(−a′rp) , µ (F ≤ E (F )− r) ≤ C ′ exp(−a′rp).

The metric measure space which is most relevant for this subsection is the Grassmannian G(d, k) equipped
with the metric d(L,K) = ‖ΠL −ΠK‖ and the uniform probability measure µG(d,k). This measure µG(d,k) can be
defined with the help of the fact that the orthogonal group O(d) is acting on G(d, k). If θ denotes the normalized
Haar measure on O(d) and L a fixed element of G(d, k), one defines [25, p.93]

µG(d,k)(B) := θ ({θ | θL ∈ B}) .

By Theorem 5.3, proving αG(d,K) ≤ C exp(−ar2) for some C, a > 0 immediately implies Lemma 3.2. Our strategy

will be to use a similar result on the sphere Sd−1.
Let us first state and present a proof of this relatively well-known result.

24



B

Bε

cε

arcsin(cε)

1−
√

1− c2ε

r

⇔ cε ≤ ε
√

1− ε2

4

r2 = c2ε + (1−
√

1− c2ε)2

≤ ε2

Figure 10: cε = ε
√

1− ε2

4 .

Lemma 5.4. We have

αSd−1(r) ≤
√
π

8
exp(−dr2/4), (9)

where Sd−1 is equipped with the normalized uniform measure σd−1 and the metric inherited from Rd.

Proof. Let A be a subset of Sd−1 with σd−1(A) = 1/2, and B a spherical cap with radius π/2, i.e., a set of the
form

B =
{
x ∈ Sd−1|distS(x, a) ≤ π

2

}
,

where distS is the distance with respect to the geodesic metric dS(x, y) = arccos(〈x, y〉). The famous isoperometric
inequality then implies that

1− σd−1(Aε) ≤ 1− σd−1(Bε).

A proof of this very deep result can be found in, for instance, [16]. Thus it suffices to upper bound 1− σd−1(Bε).

For this, we observe that Sd−1\Bε is a spherical cap Cε of radius π/2− arcsin(cε), where cε = ε
√

1− ε2

4 (see

Figure 10 for an illustration). Now, the measure of Cε can be calculated by elementary integration, and we use
[3, p.58], which proves that

σd−1(Cε) ≤
√
π

8
exp(− arcsin(cε)

2(d− 1)/2).

Since ε ≤
√

2 (Cε is non-trivial only for these values of ε), this implies

arcsin(cε)
2 ≥ c2ε = ε2(1− ε2/4) ≥ ε2/2.

Hence we may estimate exp(− arcsin(cε)
2(d − 1)/2) ≤ e exp(−dε2/4), where we again used ε ≤

√
2. This proves

the claim.

The reason why it is possible to deduce a rapid decay for the concentration function on G(d, k) from the rapid
decay of the one of Sd−1 is the fact that the uniform probability measures on the two spaces are related as follows:
if we fix L ∈ G(d, k) and ν ∈ Sd−1, for each Borel set B ⊆ G(d, k), we have

µG(d,k)(B) = θ ({θ | θL ∈ B}) = σd−1 ({qη | qL ∈ B}) . (10)

The first equality is simply the definition of the measure µG(d,k) and the second is proven in [25, p.91]. With this
formula, we may deduce the rapid decay of αG(d,K). For this, we first require the following lemma.
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Lemma 5.5. Let r > 0 and η, ρ ∈ Sn−1 . Then there exists some q̂ ∈ O(d) with q̂η = ρ and ‖q̂ − id‖2→2 =
‖η − ρ‖2.

Proof. Let η2 be a vector in span(η, ρ) which is orthogonal to ρ, and (η3, . . . , ηd) be a completion of (η, η2) to an
orthonormal basis. Let further ρ = cosα η+sinα η2. We then define q̂ through the following matrix representation
in the basis (η, η2, . . . , ηd):

M =

cosα − sinα 0
sinα cosα 0

0 0 id

 .
This obviously yields qη = ρ.

To calculate ‖q̂ − id‖2→2, we use the fact that since the basis (η, η2, . . . , ηd) is orthonormal, ‖q − id‖2→2 =
‖M − id‖2→2. If v ∈ Rd, we have

‖(M − id)v‖22 = ((cosα− 1)v1 − sinαv2)
2

+ ((cosα− 1)v1 + sinαv2)
2

= ((cosα− 1)2 + sin2 α)(v2
1 + v2

2) = 2(1− cosα)(v2
1 + v2

2),

and hence, ‖M − id‖2→2 =
√

2(1− cosα). Since at the same time ‖ρ− η‖22 = 1− 2 〈ρ, η〉+ 1 = 2(1− cosα), the
claim has been proven.

Now we are finally in the situation to prove Lemma 3.2.

Proof of Lemma 3.2. As we already mentioned, it is sufficient to prove that the concentration function αG(d,k)

satisfies αG(d,k)(r) ≤ C exp(−adr2) for some C and a > 0. To do this, fix L ∈ G(d, k) and ν ∈ Sd−1. Due to (10),
we then have, for each Borel set A ⊆ G(d, k),

µ(A) = σd−1 ({qν | q ∈ O(d) : qL ∈ A}) and µ(Aε) = σd−1 ({qν | q ∈ O(d) : qL ∈ Aε}) .

Next, let µ(A) ≥ 1/2 and denote S := {qν | q ∈ O(d) : qL ∈ A} as well as Sε := {qν | q ∈ O(d) : qL ∈ Aε}. We
now claim that {

η
∣∣∣ dS(η, S) ≤ 1

2
ε

}
⊆ Sε. (11)

This will finish the proof, since

µ(Aε) = σd−1(Sε) ≥ θ
({

η
∣∣∣ dS(η, S) ≤ 1

2
ε

})
≥ 1− αSd−1

(r
2

)
≤ C exp

(
−ar

2

4

)
,

where we used 9 together with the fact that σd−1(S) = µ(A) ≥ 1/2.
Thus it remains to prove (11). For this, let ρ ∈ Sε. Then there exists some η ∈ S with ‖ρ− η‖2 ≤ ε/2. The

vector η can, by definition of S, be represented as qν, where qL ∈ A. Lemma 5.5 further implies the existence of
some q̂ ∈ O(d) with ρ = q̂η = q̂qν and ‖q̂ − id‖2→2 ≤ ε/2. Hence

dist(q̂qL,A) ≤ d(q̂qL, qL) = ‖Πq̂qL −ΠqL‖2→2 = ‖q̂ΠqLq̂
∗ −ΠqL‖2→2

≤ ‖q̂ΠqLq̂
∗ −ΠqLq̂

∗‖2→2 + ‖ΠqLq̂
∗ −ΠqL‖2→2 ≤ 2 ‖q̂ − id‖2→2 ≤ ε.

This finally implies that q̂qL ∈ Aε, i.e., ρ ∈ Sε, and the claim has been proven.
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5.3 Proof of Theorem 3.4

Before presenting the rigorous proof of the ”global” performance of the index selection procedure of PROMP ,
which inevitably will be a bit cluttered, let us briefly first present its key ideas. We first recall Lemma 3.1, which
states that

ΠkerA⊥x0 = R2x0 +R
√

1−R2Qx0
[θ, 0].

In order to prove that the procedure will not choose as many as n1 indices in Sc0, or will fail to choose n2 indices
in S0, it suffices to prove that, for each T1 ⊆ Sc0 with |T1| = n1 and T2 ⊆ S0 with |T2| = n2, we have∥∥∥∥ dmΠRT1 ΠkerA⊥x0

∥∥∥∥
−∞
≤ ϑ and

∥∥∥∥ dmΠRT2 ΠkerA⊥x0

∥∥∥∥
∞
≥ ϑ.

We first use d/m ·R2 ≈ 1, ΠRT1x0 = 0, and T2 ⊆ suppx0, to conclude that with very high probability∥∥∥∥ dmΠRT1 ΠkerA⊥x0

∥∥∥∥
−∞
≈
∥∥∥ΠRT1

√
d/m− 1Qx0

[θ, 0]
∥∥∥
−∞

and∥∥∥∥ dmΠRT2 ΠkerA⊥x0

∥∥∥∥
∞
≈
∥∥∥ΠRT2x0 −ΠRT2

√
d/m− 1Qx0

[θ, 0]
∥∥∥
∞
≥ ‖x0‖−∞ −

∥∥∥ΠRT2
√
d/m− 1Qx0

[θ, 0]
∥∥∥
∞
.

Then we argue, using different types of concentration of measure arguments, that with very high probability

‖ΠRT1Qx0
[θ, 0]‖−∞ ≤

1√
d

and ‖ΠRT2Qx0
[θ, 0]‖∞ ≈

√
d

d− 1

Γ
(
d
2

)
Γ
(
d+1

2

) (√log n2 +

√
2

π

‖x0‖∞
‖x0‖2

)
,

which, together with a union bound over all possible choices for T1 and T2, principally yields the statement of
the theorem.

We will need the following well known result. A proof can be found in, for instance [26], (note that the lemma
is formulated slightly different there, but the proof shows that the formulation below is equivalent).

Lemma 5.6. [26, Lemma 2.6] Let θ be uniformly distributed over the sphere Sd−1, and L a fixed m-dimensional
subspace. Then there exist universal constants M and α such that

P
(∣∣∣∣‖ΠLθ‖2 −

√
m

d

∣∣∣∣ ≥ t√m

d

)
≤M exp(−mαt2).

We now refine our sketch, starting with a lemma concerning estimates of ‖ΠRT1Qx0
[θ, 0]‖−∞ and ‖ΠRT2Qx0

[θ, 0]‖∞.

Lemma 5.7. Let θ ∼ U
(
Sd−2

)
and x0 ∈ Rd be supported on S0. Then there exist universal constants D and b

such that, for every T1 ⊆ Sc0, T2 ⊆ S0 and τ > 0,

‖ΠRT1Qx0
[θ, 0]‖−∞ ≤

√
1

d

(
1 + τ

√
m

d

)
with a probability larger that 1−D exp(−mbτ2), and

‖ΠRT2Qx0 [θ, 0]‖∞ ≤
√

d

d− 1

1

1−
√

m
d−1τ

(
Γ
(
d
2

)
Γ
(
d+1

2

) (√log |T2|+
√

1

π

‖x0‖∞
‖x0‖2

)
+ τ

√
m

d

)

with a probability larger than 1−D exp(−bτ2).
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Proof. To simplify the notation, we use the abbreviation η0 = x0/ ‖x0‖2. Let us start with the statement about
ΠRT1Qx0 [θ, 0]. For this, we first argue that we may choose Qx0 in such a way so that ΠRT1Qx0 [θ, 0] = [ΠRT1 θ, 0]. To
see this, note that as long as Qx0ed = η0, the choice is arbitrary. If, without loss of generality, S0 = [d−|S0|+1, d],
we may hence ensure that it has this form:

Qx0 =

[
id 0

0 Q̃x0

]
.

For this choice of Qx0
, it is evident that ΠRT1Qx0

[θ, 0] = [ΠRT1 θ, 0].
Next, we bound the probability that ‖ΠRT1Qx0

[θ, 0]‖−∞ = ‖ΠRT1 θ‖−∞ ≥ t. Notice that ‖ΠRT1 θ‖−∞ ≥ t

implies that ‖ΠRT1 θ‖2 ≥
√
|T1|t. If t =

√
1/d(1 + τ

√
m/ |T1|), by Lemma 5.6, this in turn happens with a

probability smaller than M exp(−mατ2). The first claim is proved.

The second claim is a bit trickier to prove. Let us begin by showing that we can write the random variable
Qx0

[θ, 0] a bit differently: If ν ∼ U
(
Sd−1

)
, we have

Qx0

([
θ
0

])
∼

Πx⊥0
ν

‖Πx⊥0
ν‖2

, (12)

where x⊥0 denotes the orthogonal complement of spanx0. To prove this claim, it is sufficient to prove that
Q∗x0

Πx⊥0
ν/‖Πx⊥0

ν‖2 is uniformly distributed over Sd−2.

For this, first we observe that the variable is almost always well-defined, since ‖Πx⊥0
ν‖2 > 0 with probability

1. Trivially, it has norm 1, and furthermore〈
Q∗x0

Πx⊥0
ν, ed

〉
=
〈

Πx⊥0
ν,Qx0ed

〉
=
〈

Πx⊥0
ν, η0

〉
= 0,

since η0 and x0 are parallel. This means that the d-coordinate of Q∗x0
Πx⊥0

ν is vanishing, i.e., Q∗x0
Πx⊥0

ν ∈ Sd−2.

To prove the uniform distribution, it is sufficient to show that for each u in the orthogonal group O(d − 1), we
have uQ∗x0

Πx⊥0
ν/‖Πx⊥0

ν‖2 ∼ Q∗x0
Πx⊥0

ν/‖Πx⊥0
ν‖2. Let us identify u with the matrix in u ∈ O(d) which acts on

{ed}⊥ as does u on Rd−1, and leaves ed invariant. Next we calculate

uQ∗x0
Πx⊥0

ν = uQ∗x0
(ν − 〈ν, η0〉 η0) = uQ∗x0

ν − 〈ν, η0〉uQ∗x0
η0 = uQ∗x0

ν −
〈
uQ∗x0

ν, ed
〉
ed

∼ ν − 〈ν, ed〉 ed = Q∗x0
(Qx0

ν − 〈Qx0
ν, η0〉Qx0

ed) ∼ Q∗x0
(ν − 〈ν, η0〉 η0) = Q∗x0

Πx⊥0
ν.

We remark that in this computation, we exploited several times that qν ∼ ν for any orthogonal matrix q ∈ O(d),
and also η0 = Qx0

ed. Summarizing, we have

uQ∗x0
Πx⊥0

ν

‖Πx⊥0
ν‖2

=
uQ∗x0

Πx⊥0
ν

‖uQ∗x0
Πx⊥0

ν‖2
∼

Q∗x0
Πx⊥0

ν

‖Q∗x0
Πx⊥0

ν‖2
=
Q∗x0

Πx⊥0
ν

‖Πx⊥0
ν‖2

,

thereby proving (12).
Now we have ∥∥∥∥ΠRT2Qx0

([
θ
0

])∥∥∥∥
∞

=
‖ΠRT2 Πx⊥0

ν‖∞
‖Πx⊥0

ν‖2
.

The denominator of this quotient is the `2-norm of the projection of a uniformly distributed point on Sd−1 onto
a subspace of dimension (d− 1). Therefore, due to Lemma 5.6, we have

P

(
‖Πx⊥0

ν‖2 ≥
√
d− 1

d

(
1−

√
m

d− 1
τ

))
≥ 1−M exp(−αmτ2). (13)
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M and α are as in said lemma.
For the numerator, we first estimate its expected value. Note that, if ρ |= ν is χ2-distributed, ρν =: g is

Gaussian. Therefore,

E
(
‖ΠRT2 Πx⊥0

ν‖∞
)

=
1

E (ρ)
E
(
‖ΠRT2 Πx⊥0

g‖∞
)
.

It is well known that E (ρ) =
√

2Γ(d+ 1/2)/Γ(d/2). We furthermore have

E
(
‖ΠRT2 Πx⊥0

g‖∞
)
≤ E (‖ΠRT2 g‖∞) + E (|〈g, η0〉|) ‖ΠRT2 η0‖∞.

For the first term in this sum, we derive E (‖ΠRT2 g‖∞) ≤
√

2 log |T2|, since ΠRT2 g is a |T2|-dimensional Gaussian

[23]. For the second, we trivially have E (|〈g, η0〉|) =
√

2/π. Putting everything together, we obtain

E
(
‖ΠRT2 Πx⊥0

gν‖∞
)
≤

Γ
(
d
2

)
Γ
(
d+1

2

) (√log |T2|+
√

1

π

‖x0‖∞
‖x0‖2

)
.

Finally, since the function η → E
(
‖ΠRT2 Πx⊥0

η‖∞
)

is 1-Lipschitz on the sphere, we may apply Theorem 5.3 to

conclude that

P

(
‖ΠRT2 Πx⊥0

gν‖∞ >
Γ
(
d
2

)
Γ
(
d+1

2

) (√log |T2|+
√

1

π

‖x0‖∞
‖x0‖2

)
+ τ

√
m

d

)

≤ P
(
‖ΠRT2 Πx⊥0

gν‖∞ > E
(
‖ΠRT2 Πx⊥0

gν‖∞
)

+ τ

√
m

d

)
≤ C exp

(
−amτ2

)
. (14)

Putting (13) and (14) together, and setting D = max(M,C), b = min(α, a), yields the claim.

With the preparation at hand, the proof of the theorem is now relatively easy.

Proof of Theorem 3.4. We follow the strategy sketched above and consider for T1 ⊆ Sc0 with |T1| = n1 and T2 ⊆ S0

with |T2| = n2 the random variables
∥∥ d
mΠRT1 ΠkerA⊥x0

∥∥
−∞ and

∥∥ d
mΠRT2 ΠkerA⊥x0

∥∥
∞. By Lemma 3.1, i.e.,

ΠkerA⊥x0 = R2x0 +R
√

1−R2Qx0 [θ, 0],

and using the fact that ΠRT1x0 = 0 and
∥∥∥ΠRT2 x0

∥∥∥
∞
≥ ‖x0‖−∞, we obtain∥∥∥∥ dmΠRT1 ΠkerA⊥x0

∥∥∥∥
−∞
≤ d

m
R
√

1−R2

∥∥∥∥ dmΠRT1Qx0
[θ, 0]

∥∥∥∥
−∞

,∥∥∥∥ dmΠRT2 ΠkerA⊥x0

∥∥∥∥
∞
≥ d

m
R2 ‖x0‖−∞ −R

√
1−R2 ‖ΠRT2Qx0

[θ, 0]‖∞ .

This implies that if the events

• ER =

{√
d
mR ∈ (1− τ, 1 + τ)

}
,

• ET1
=

{
‖ΠRT1Qx0

[θ, 0]‖−∞ ≤
√
|T1|
d

(
1 + τ

√
m
d

)}
, and

• ET2 =

{
‖ΠRT2Qx0 [θ, 0]‖∞ ≤

√
d

(d−1)(1−
√

m
d−1 τ)

(
Γ( d2 )

Γ( d+1
2 )

(√
log |T2|+

√
1
π

‖x0‖∞
‖x0‖2

)
+ τ
√

m
d

)}
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occur, we have∥∥∥∥ dmΠRT1 ΠkerA⊥x0

∥∥∥∥
−∞
≤ ϑ−(τ, n1,m) and

∥∥∥∥ dmΠRT2 ΠkerA⊥x0

∥∥∥∥
∞
≥ ϑ+(τ, n2,m),

where we defined

ϑ−(τ, n1,m) := (1 + τ)

√
d

m
− (1− τ)2

√
|T1|
d

(
1 + τ

√
m

d

)
ϑ+(τ, n2,m) :=(1− τ)2 ‖x0‖∞ − (1 + τ)

√
d

m
− (1− τ)2 ·

√
d

d− 1

1

1−
√

m
d−1τ(

Γ
(
d
2

)
Γ
(
d+1

2

) (√log |T2|+
√

1

π

‖x0‖∞
‖x0‖2

)
+ τ

√
m

d

)
.

Now, according to the definition of R and Lemma 5.6,

P (ER) ≥
(
1−D exp

(
−amτ2

))
, P

(
EcT1

)
≤ D exp(−bτ2/2), and P

(
EcT2

)
D exp(−mbτ2/2).

Since furthermore ER |= (ET1 , ET2)T1⊆Sc0 ,Ts⊆S0 (since R and θ are independent, we conclude that

P
(
ER ∩

( ⋂
T1⊆Sc0
|T1|=n1

ET1 ∪
⋂

T2⊆S0

|T2|=n2

ET2

))
≥ P (ER)

(
1−

( ∑
T1⊆Sc0
|T1|=n1

P
(
EcT1

)
+

∑
T2⊆S0

|T2|=n2

P
(
EcT2

) ))

≥
(
1− exp

(
−bmτ2

))(
1−D

(
d− |S0|
n1

)(
|S0|
n2

)
exp

(
−bmτ2

))
,

which is the assertion of the theorem.

5.4 Proof of Theorem 3.13

We will now carry out the argument which was sketched in Section 3.2. To do that, we require two results from
geometric measure theory.

Lemma 5.8. (i) [3, p.5] Let g ∈ Rd be a Gaussian vector and ε > 0. Then we have

P
(
‖g‖22 ≤ d(1− ε)

)
≤ exp(−ε2/4).

and

P
(
‖g‖22 ≥ d/(1 + ε)

)
≤ exp(−ε2/4).

(ii) Let θ be uniformly distributed on the sphere Sd−1 and ν ∈ Sd−1 be arbitrary. Then, for every t > 0,

P (|〈θ, ν〉| > t) ≤
√
π

2
exp(−t2/4).

Proof. A proof of (i) can be found in [3].
Let us briefly argue why (ii) is true. Due to symmetry, the set A = {θ | 〈θ, ν〉 ≤ 0} has measure 1/2 (i.e., 0

is a median of the function θ → 〈θ, ν〉). It is easy to convince oneself that {〈θ, ν〉 ≤ t} ⊇ At. Therefore we have,
due to the definition of the concentration function and the decay bound (9),

P (〈θ, ν〉 > t) ≤ σd−1(At) ≤
√
π

8
exp(−t2/4).

Since P (〈θ, ν〉 < t) can be bounded in a similar manner, the proof is finished.
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Now we can can turn to the proof the theorem.

Proof of Theorem 3.13. Since ΠranA⊥S
ai = 0 for i ∈ S, the values µS(A) and maxi∈I

∥∥∥ΠranA⊥S
ai

∥∥∥2

2
are only

dependent on the vectors (ai)i 6=S . This together with Lemma 3.11 and Remark 3.12 implies that we may replace

ΠranA⊥S
aj with ãj in all our calculations, where ãj are the columns of a Gaussian matrix Ã ∈ Rm−|S|,d−|S| := Rm̃,d̃.

We must hence control the probability that

max
i∈I
‖ãi‖22 ≥ µ(Ã)(2 |S0\S| − 1). (15)

To do this, we consider each side of the inequality (15) on its own. The expression on the left hand side can
be controlled with the help Lemma 5.8(i) as follows. According to this lemma, the probability than one vector
ãi ∈ Rm̃ has squared `2-norm smaller than m̃(1 − ε) is smaller than exp(−m̃ε2/4). Since the vectors (ãi)i∈I are
independent, we hence have

P
(

max
i∈I
‖ãi‖22 ≤ m̃(1− ε)

)
= P

(
∀i ∈ I : ‖ãi‖22 ≤ m̃(1− ε)

)
=
∏
i∈I

P
(
‖ãi‖22 ≤ m̃(1− ε)

)
≤ exp(−m̃ |I| ε2/4).

Let us for now postpone the choice of ε and instead consider the right hand side of (15). For each i and j,
using the fact that Ã is Gaussian, we have

〈ãi, ãj〉 = ‖ãi‖2 ‖ãj‖2 〈θi, θj〉 ,

where (θi)i=1...d̃ is a family of independent vectors uniformly distributed over Sm̃−1. Now, due to Lemma 5.8(i),

we have ‖ãi‖2 ≤
√
m̃/(1− t) with a probability larger than 1 − d̃ exp(−m̃t2/4). Moreover, Lemma 5.8(ii)

together with the fact that the θ’s are independent implies that |〈θi, θj〉| ≤ t with a probability larger than
1−

√
π
2 exp(−t2/4) ≥ 1−

√
π
2 exp(−m̃t2/4). A union bound and the above inequality secure that

P
(
µ(Ã) ≥ m̃t/(1− t)

)
≤ 1−

(√
π

2
d̃(d̃− 1) + d̃

)
exp(−m̃t2/4)

Summarizing, we just have proven that condition (15) holds with a complementary probability smaller than(√
π
2 d̃(d̃− 1) + d̃

)
exp(−m̃t2/4) + exp(−m̃ |I| ε2/4), provided that we choose the parameters ε, t in such a way

that

(1− ε) ≥ t

1− t
(2 |S0\S| − 1). (16)

Let us now choose ε = t/
√
|I| . Then it is an elementary algebra exercise to prove that (16) is satisfied, if we

select t to satisfy

0 ≤ t ≤
2 |S0\S|

√
|I|+ 1

2

1−

√√√√1−
√
|I|

(
2

2 |S0\S|
√
|I|+ 1

)2
 ≤ 2

√
|I|

2 |S0\S|
√
|I|+ 1

,

where we in the last step used that
√

1− x ≥ 1− x for 0 ≤ x ≤ 1. Hence, the probability that (15) is fulfilled is
larger than

1−
(
e

√
π

8
d̃(d̃− 1) + d̃

)
exp

−m̃
4
·

(
2
√
|I|

2 |S0\S|
√
|I|+ 1

)2
 .

But this term is larger than 1 − η, if m̃ ≥
(

2|S0\S|
√
|I|+1

2
√
|I|

)2

log

(√
π
2 d̃(d̃−1)+d̃

η

)
, which is equivalent to the

assumption of the theorem.
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5.5 Proof of Theorem 3.15

Theorem 3.15 is a generalization of an analogous statement from the paper [43]. The proof follows to some extent
the lines of the one in that paper; however at the same time several steps in the argument require careful adaption.

In the sequel, we will make use of the two fairly standard results on Gaussian matrices.

Lemma 5.9. (i) [43] Let g be Gaussian and q1, . . . qn a sequence of vectors with less than unit norm, which is
independent of ai. Then, for every t > 0, we have

P
(

max
i
|〈g, qi〉| ≥ t

)
≥ (1− exp(−t2/2))k.

(ii) [12] Let A ∈ Rm,d be Gaussian, and denote its smallest non-zero singular value with σmin(A). Then, for
every ε > 0, we have

P
(
σmin(A) >

√
d−
√
m− ε

)
≤ exp(−ε2/2)

Remark 5.10. We wish to remark that part (ii) of this lemma is often stated for matrices ∼ N (0, d−1 id). One
may although of course switch to the standard Gaussian setting simply by scaling.

With the help of this lemma, we can now present the proof of Theorem 3.15.

Proof of Theorem 3.15. Let us begin by noting that in order to prove that x0 is recovered by OMP , it suffices
to show that the indices in S0\S are found by OMP in |S0\S| iterations. If this happens, the |S0\S|-th support
iterate S∗ will have not more than m indices (due to the assumption |S|+ |S\S0| ≤ m). Therefore, the Gaussian
matrix AS∗ formed by the columns corresponding to S∗ will almost surely be injective, and hence, the equation
Ax = b will have at most one solution on RS∗ . Since S0 ⊆ S∗ due to assumption, the solution x0 of Ax = b will
lie in RS∗ , and will hence be the only solution. Thus, x0 will be uniquely reconstructed in |S0 6= S| iterations.

After this preconsideration, we now start the proof by decomposing the matrix A into three parts:

A = [AS | AS0\S | AS0∪Sc ].

The three parts of the matrix are independent and all are Gaussian. To enhance readability of the rest of the
argument, let us abbreviate

T := S0\S andP := (S0 ∪ S)c.

Also, define the selection ratio

ρ : Rm → R, r 7→
‖A∗P r‖∞
‖A∗T r‖∞

.

According to the selection procedure of OMP , an index in T (i.e., a correct index) will be chosen if and only if
the current residual r obeys ρ(r) < 1.

Now we use the very clever technique of a ”virtual residual sequence” (qk) from [43]. We define this sequence
as the sequence of residuals which would appear, if we ran OMP with the matrix [AS | AT ]. Due to the fact that,
if OMP is successful at recovering the indices in T , it will choose exactly that sequence, and this will happen if
and only if ρ(qk) < 1 for each k, we conclude

P ( OMP finds all indices in T ) = P
(

max
k=1...|T |

ρ(qk) < 1

)
.

(For a more detailed argument, we refer to [43].) By the definition of the qk’s, they will all be contained in the
column space of [AS | AT ] and also be orthogonal to ranAS , i.e., qk ∈ ran ΠranA⊥S

AT .
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To estimate the probability of the event E =
{

maxk=1...|T | ρ(qk) < 1
}

, we use that, for every σ > 0,

P(E) ≥ P
(
E ∩

{
σmin(ΠranA⊥S

AT ) ≥ σ
})

= P (E | Σ)P (Σ) , (17)

where we abbreviated Σ :=
{
σmin(ΠranA⊥S

AT ) ≥ σ
}

. Next we bound the probability of each of the factors on the

right hand side of (17), starting with P (Σ). According to Lemma 3.11 and Remark 3.12, we have

P (Σ) = P
(
σmin(Ã) ≥ σ

)
,

where Ã ∈ Rm̃,|T |, m̃ = m − |S| is Gaussian. The probability of this event can furthermore be bounded below
with the help of Lemma 5.9(ii). In fact, choosing σ =

√
m̃−

√
|T | − ε, we obtain

P (Σ) ≥ 1− exp(−ε2/2). (18)

Let us now turn to the other factor from (17). Since A∗T qk ∈ R|T |, we have ‖A∗T qk‖2 ≤
√
|T | ‖A∗T qk‖∞.

Furthermore, since qk ∈ ran(ΠranA⊥S
AT ), we have ‖A∗T qk‖2 =

∥∥∥A∗TΠranA⊥S
qk

∥∥∥
2
≥ σmin(ΠranA⊥S

AT ) ‖qk‖2 ≥
σ ‖qk‖2. Hence,

ρ(qk) =
‖A∗P qk‖∞
‖A∗T qk‖∞

≤
√
|T |
σ
· max`∈P |〈a`, qk〉|

‖qk‖2
.

Thus, setting uk := qk/ ‖qk‖2, we conclude that these vectors are all normalized, orthogonal to ranAS and
independent of (ai)i∈P . In particular,

max
k∈T

ρ(qk) ≤ max
k

√
|T |
σ
·max
`∈P

∣∣〈Π⊥ranASa`, uk
〉∣∣ .

Next we would like to apply Lemma 3.11. This is although not possible, since the functionA 7→ max`∈P

∣∣∣〈ΠranA⊥S
a`, uk

〉∣∣∣
is not invariant under orthogonal transformations, even if we condition on the uk. We can however still use the
philosophy of the result as follows: Since (ai)i∈P |= (ai)i∈S∪T , we may condition on (ai)i∈S∪T , i.e., see them as
fixed. Let q ∈ O(m) be such that ranA⊥S = qLn = q span(e1, . . . en). Then

max
k∈T

max
`∈P

∣∣〈Π⊥ranASa`, uk
〉∣∣ = max

k∈T
max
`∈P
|〈ΠLnq

∗a`, q
∗uk〉| ∼ max

k∈T
max
`∈P
|〈ã`, ũk〉| ,

where (ã`)`∈P is the columns of a Gaussian matrix Ã ∈ Rm̃,|P | (see also the proof of Lemma 3.11) and ũk = q∗uk
is a sequence of normalized vectors independent of (ã`)`∈P . Hence, by interchanging the maxima and exploiting
the independence of the (ãi)i, we obtain

P (E | σ) = P
(

max
k∈T

max
`∈P
|〈ã`, ũk〉| <

σ√
T

∣∣ Σ

)
=
∏
`∈P

P
(

max
k∈T
|〈ã`, ũk〉| <

σ√
T

∣∣ Σ

)
(19)

≥
(

1− exp

(
− σ2

2 |T |

))|T ||P |
, (20)

where in the last step we used Lemma 5.9(i).
Concluding, by applying (18) and (19) to (17) and remembering that we chose σ =

√
m̃−

√
|T |− ε, we obtain

P (E) ≥

(
1− exp

(
−

(
√
m̃−

√
|T | − ε)2

2 |T |

))|T ||P |
(1− exp(−ε2/2)). (21)

It now remains to choose ε wisely. Noticing that |T |+ |P | = |S0\S|+ d− |S ∪ S0| = d− |S|, we may use exactly
the same argument as the authors of [43] to deduce that it is possible to choose ε in such a manner so that the
right hand side of (21) is larger than 1− η provided that

m̃ ≥ C |T | log(d̃/η)

with C = 4(1 + m̃−1/2). This is exactly the statement of the theorem.
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