A GENERALIZATION OF GRAM-SCHMIDT
ORTHOGONALIZATION GENERATING ALL PARSEVAL FRAMES

PETER G. CASAZZA AND GITTA KUTYNIOK

ABSTRACT. Given an arbitrary finite sequence of vectors in a finite-dimensional
Hilbert space, we describe an algorithm, which computes a Parseval frame for the
subspace generated by the input vectors while preserving redundancy exactly. We
further investigate several of its properties. Finally, we apply the algorithm to several
numerical examples.

1. INTRODUCTION

Let H be a finite-dimensional Hilbert space. A sequence (f;), C H forms a frame,
if there exist constants 0 < A < B < oo such that

Allgll> <D 1K fig))* < Bllgl® for all g € H. (1)
1=1

Frames have turned out to be an essential tool for many applications such as, for
example, data transmission, due to their robustness not only against noise but also
against losses and due to their freedom in design [4, 6]. Their main advantage lies in the
fact that a frame can be designed to be redundant while still providing a reconstruction
formula. Since the frame operator Sg =", (g, f;) f is invertible, each vector g € H
can be always reconstructed from the values ({g, f;)) via

n

g="5"8g=> (g, f)S7'fi

i=1
However, the inverse frame operator is usually very complicated to compute. This
difficulty can be avoided by choosing a frame whose frame operator equals the identity.
This is one reason why Parseval frames, i.e., frames for which S = Id or equivalently
for which A and B in (1) can be chosen as A = B = 1, enjoy rapidly increasing
attention. Another reason is that quite recently it was shown by Benedetto and Fickus
[1] that in R? as well as in C¢ finite equal norm Parseval frames, i.e., finite Parseval
frames whose elements all have the same norm, are exactly those sequences which are in
equilibrium under the so—called frame force, which parallels a Coulomb potential law in
electrostatics. In fact, they demonstrate that in this setting both orthogonal equal norm
sets and finite equal norm Parseval frames arise from the same optimization problem.

Date: January 11, 2005.
1991 Mathematics Subject Classification. Primary 42C15; Secondary 46C99, 94A12.
Key words and phrases. Finite-dimensional Hilbert space, Gram—Schmidt orthogonalization, linear
dependence, Parseval frame, redundancy.
1

2 PETER G. CASAZZA AND GITTA KUTYNIOK

Thus, in general, Parseval frames are perceived as the most natural generalization of
orthogonal bases.

For more details on frame theory we refer to the survey article [3] and the book [5].

Given a finite sequence in a finite-dimensional Hilbert space, our driving motivation
is to determine a Parseval frame for the subspace generated by this sequence. We
could apply Gram—Schmidt orthogonalization, which would yield an orthonormal basis
for this subspace together with a maximal number of zero vectors. But redundancy
is the crucial part for many applications. Hence we need to generalize Gram—Schmidt
orthogonalization so that it can also produce Parseval frames which are not orthonormal
bases preferably while preserving redundancy exactly. In particular, the algorithm shall
be applicable to sequences of linearly dependent vectors.

Our algorithm is designed to be iterative in the sense that one vector is added each
time to an already modified set of vectors and then the new set is adjusted again. In
each iteration it not only computes a Parseval frame for the span of the sequence of
vectors already dealt with at this point, but also preserves redundancy in an exact
way. Moreover, it reduces to Gram—Schmidt orthogonalization if applied to a sequence
of linearly independent vectors and each time a linearly dependent vector is added,
the algorithm computes the Parseval frame which is closest in [>-norm to the already
modified sequence of vectors.

The paper is organized as follows. In Section 2 we first state the algorithm and
show that it in fact generates a special Parseval frame in each iteration. Additional
properties of the algorithm such as, for example, the preservation of redundancy, are
treated in Section 3. Finally, in Section 4 we first compare the complexity of our
algorithm with the complexity of the Gram—Schmidt orthogonalization and then study
the different steps of the algorithm applied to several numerical examples.

2. THE ALGORITHM

Throughout this paper let H denote a finite-dimensional Hilbert space. We start
by describing our iterative algorithm. On input n € N and f = (f;), C H the
procedure GGSP (Generalized Gram—Schmidt orthogonalization to compute Parseval
frames) outputs a Parseval frame g = (g;)n; C H for span{(f;)7_;} with special
properties (see Theorem 2.2).

procedure GGSP(n, f;g)

0 for £ :=1tondo
1 begin

2 if fr =0 then
3 gk = 0;

4 else

5

6

begin
g = fo = Y21 (fe95) 957

A GENERALIZATION OF GRAM-SCHMIDT ORTHOGONALIZATION 3

7 if gx # 0 then
1

Ik “= Jgen Ik

9 else

10 begin

11 fori:=1tok—-1dog;, =9, + ||fi||2 <\/1+1”ka|2 - 1) (9i> i) Jrs

12 = ———f};
9 = T

13 end;

14 end;

15 end;

end.

In the remainder of this paper the following notation will be used.

Notation 2.1. Let ® denote the mapping (f;), — (g:)I~, of a sequence of vectors in
‘H to another sequence of vectors in ‘H given by the procedure GGSP. We will also use
the notation ((f;)"1,9) := (f1,.--, fn,g) for (f))’-; C H and g € H.

The following result shows that the algorithm not only produces a Parseval frame
for span{(f;)",}, but even in each iteration also produces a special Parseval frame for
span{(f)F,}, k=1,...,n.

It is well-known that applying S ~2 to a complete sequence of vectors (f;)"; in H
yields a Parseval frame, where S denotes the frame operator for this sequence (see [3,
Theorem 4.2]). Moreover, Theorem 3.1 will show that the Parseval frame (S~2)",
is the closest in [>-norm to the frame (f;)",. However, in general the computation of
the operator S =2 is not very efficient. In fact, in our algorithm we do not compute
S=2((f;)™,). Instead in each iteration when adding a vector, which is linearly depen-
dent to the already modified vectors, we apply S =2 to those vectors and the added
one, where here S denotes the frame operator for this new set of vectors. This eases
the computation in a significant manner, since the set of computed vectors already
forms a Parseval frame, and nevertheless we compute the closest Parseval frame in
each iteration. When we add a linearly independent vector, we orthogonalize this one
vector by using a Gram—Schmidt step. Thus this algorithm is also a generalization of
Gram—Schmidt orthogonalization.

Theorem 2.2. Letn € N and (f;)I-y C H. Then, for each k € {1,...,n}, the sequence

of vectors ®((fi)k_)) is a Parseval frame for span{(fi)¥_,} = span{®((f;)%_,)}.
In particular, for each k € {1,...,n}, the following conditions hold.

(i) If fi € span{(fi)i=)'}, then

((f)im) = (SRS, fo),
where S is the frame operator for (O((f)E1), fr).

4 PETER G. CASAZZA AND GITTA KUTYNIOK

(il) If fi & span{(f,)i='}, then
O((fi)iz) = (@((f)iZ) or)s gr € H, llarll =1
and
gk L O((f)IZ)).

Proof. We will prove the first claim by induction and meanwhile in each step we show
that, in particular, the claims in (i) and (ii) hold. For this, let [denote the smallest
number in {1,...,n} with f; # 0. Obviously, for each k € {1,...,l—1}, the generated
set of vectors g; (see line 3 of GGSP) forms a Parseval frame for span{(f;)*_,} = {0}
and also (i) is fulfilled. The hypothesis in (ii) does not apply here. Next notice that
in the case k = [we have g, := m fi (line 8), which certainly is a Parseval frame for

span{(f;)%_,} = span{fi}. It is also easy to see that (i) and (ii) are satisfied.

Now fix some k € {{+1,...,n} and assume that the sequence (§;)"=} := ®((f;)*2})
is a Parseval frame for span{(f;)*='} = span{()%=}}. We have to study two cases.

Case 1: The vector gy := fr — Zf;ll (fr, Gj) g; computed in line 6 is trivial. This
implies that

span{(fi)i5} = span{(g:)i5'} = span{(fi)i_}, (2)

since otherwise the Gram—Schmidt orthogonalization step would yield a non-trivial
vector. In particular, only the hypothesis in (i) applies.

Now let P denote the orthogonal projection of H onto span{ fx}. In order to compute

5=z, where S denotes the frame operator for ((§;)=!, fi), we first show that each

(I —P)g;, i =1,...,k—1is an eigenvector for S with respect to the eigenvalue 1 or
the zero vector. This claim follows immediately from
k-1

S —P)g = Z(([_P)§i7§j>§j+ (I = P)3gi, fx) fx

7j=1
k-1
= ((I = P)gi, 3;) G

j=1

since (;)"=] is a Parseval frame for span{(g;)*='}. Also f; is an eigenvector for S, but
with respect to the eigenvalue 1 + || f¢||?, which is proven by the following calculation:

k—1

She="> {fur35) 35 + (e fu) F = L+ | fxl”) i

j=1
Using f; as an eigenbasis for P(span{(§;)"=}}) and an arbitrary eigenbasis for (I —

P)(span{(3:)¥=!'}), we can diagonalize S to compute S ~2. This together with the fact
that (I — P)g;, i = 1,...,k — 1 is an eigenvector for S with respect to the eigenvalue
1 and that S(I — P)f, = 0 yields

1
S73j=——— Pg+(I—P)j for 1<i<k—1

gi =
V1 [fel?

A GENERALIZATION OF GRAM-SCHMIDT ORTHOGONALIZATION 5

and
1

VI

Comparing these equalities with line 11 and 12 of GGSP shows that in fact ®((f;)% ;) =
(S~2((3:)*=)), fr)), which is (i). By [3, Theorem 4.2] and (2), this immediately implies
that the sequence ®((f;)¥_,) is a Parseval frame for span{®((f;)%_,)} = span{(fi)_,}.

Case 2: The condition in line 7 applies, i.e., we have g, := (fx — Zf;ll (fr:G5) G5)/
(Il fx — Z;:ll (fr,9;) Gjll) # 0. Then we set g; := g; for all i = 1,...,k — 1. Obviously,
llgx|| = 1. Moreover, since by induction hypothesis (§;)"=} forms a Parseval frame, for
eacht=1,...,k—1, we have

S7if, = fre

<gi7fk — i: <fka§j>§j> = (9i> i) = (90, Jr) = 0.

i=1

Thus g, is normalized vector, which is orthogonal to g1, ..., gx—1. Hence (ii) is satisfied
and, for all h € span{(g;)%_,}, we obtain

> gl = i: (L = P, g)[* + [{Ph, gi)|* = (I = P)R|I* + | PRI = |||,

i=1 i=1

where P denotes the orthogonal projection of H onto span{gy}. This proves that
(g)F, = ®((f;))k,) is a Parseval frame for span{®((f;)*,)}. Moreover, we have
span{®((fi)i,)} = span{(f)i=), fi — 2321 (f 95) 95} = span{(fi)i, }. This finishes
the proof, since the hypothesis in (i) does not apply in this case. O

The algorithm can be seen as a “Gram—Schmidt procedure backwards” in the sense
that in each iteration, if the added vector is linearly dependent to the already computed
vectors, not only this vector is modified, but also all the other vectors are rearranged
with respect to the new vector so that the collection forms a Parseval frame. This way
of computation will be demonstrated by several examples in Subsection 4.2.

3. SPECIAL PROPERTIES OF THE ALGORITHM

In this section we first determine in general which Parseval frame is the closest to
the initial sequence and study which properties of our algorithm this result implies.
Then we investigate several additional properties of the procedure GGSP, in particular
we characterize those sequences, which lead to orthonormal bases, and we show that
® regarded as a map from finite sequences to Parseval frames is “almost” bijective. At
last, we examine the redundancy of the generated Parseval frame.

Given a frame (f;)!, with frame operator S, by [3, Theorem 4.2], the sequence
(S —3 fi)i, always forms a Parseval frame. The following result shows that this sequence
can in fact be characterized as the very same Parseval frame, which is the closest to
(f)™, in [*norm.

6 PETER G. CASAZZA AND GITTA KUTYNIOK
Theorem 3.1. If (f;)".; C H, n € N is a frame for H with frame operator S, then
& _1 2 . & 2 . n .
Z \fi —S72fi||° = 1nf{z I fi — aill” : (g:)iy is a Parseval frame for H}.
i=1 i=1
Moreover, (572 f;)™_, is the unique minimizer.

Proof. Let (e;)? -1, d == dim H, be an orthonormal eigenvector basis for H with respect
to S and respective eigenvalues (\;)9 5—1- Then we can rewrite the left-hand side of the
claimed inequality in the following way:

n n d
Sofi=STEARE = DI (fueides — —=(fies) el
Vi
i=1 =1 j=1
n d
- [(fren)P 1= =l

d
= Z|1_—| Z| flaej

d
- 1- by
;I \fl
d

= Y (=22 +1).

j=1

Now let (g;); be an arbitrary Parseval frame for H. Using again the eigenbasis and
its eigenvalues, we obtain

n n d
ZHfi_gin = ZHZ fisei) e; — (gi) &7
i=1 =1 j=1
d

= ZZ‘ fl’ej gluej>|

i=1 j=1
d n

_ ZZO (o) + g) = 2Re [(£ 5) (g 650)

d n
_ z(z| el +z| (oo e — 2R z<fz,ej><gi,ej>])

j=1 =1

d

= Z()\j+1—2Re

i=1

n

Z (firej) <gz> ej)

1=1

A GENERALIZATION OF GRAM-SCHMIDT ORTHOGONALIZATION 7

Moreover, we have

> _Re Z<fi,ej>m] .

3

Mg

[(fir i)l 1(9i €5)]

=1

<.
Il
—

n

[(Fivend | D Hgis el

=1 =1

B
Ms

<.
Il
_

M&

V.

<.
Il
—

Combining this estimate with the computations above yields
n d n
1
Dfi—glP=> (N =2/N+ 1) =D llfi =52 £
i=1 j=1 i=1

Since (S~ f;)™, is a Parseval frame for H, the first claim follows.
For the moreover part, suppose that (g;)"; is another minimizer. Then, by the
above calculation, for each k € {1,...,n} and j € {1,...,d}, we have

Re (fe, €5) (g €5) = [{fe> €5)| [(gr- €5)] (3)
and, for each j € {1,...,d},

3

> e e gk e5)] = (frr €] Z| (gr. €5)]". (4)
=1

k=1

Now let 7y, 8¢, > 0 and 60y ;,¢; € [0,27) be such that (fy,e;) = ry e and
(gk, €j) = sy e*5. We compute

Re [(fk, e;) (G, ej)} =ry,;Sk;Re [ei(ek’j_””“vf)} = Tk;Sk,; COS(Ok j — Vi)
Hence (3) implies that

Tk,jSk,j COS(Gk,j - 1/%,;’) = Tk,jSk,5,
which in turn yields 6y ; = ;. Thus (gx,e;) = tx; (fi,e;) for some ¢, ; > 0 for all
ke{l,....,n},je{l,...,d}. By (4), for each j € {1,...,d} there exists some u; > 0
such that
u; |[(fe i) = [{gn> €] = tuj [{fe, €)] -

This implies ¢, ,;, = u; for all k € {1,...,n}. Hence, for each k € {1,...,n} and
j €{1,...,d}, we obtain the relation

(grs €5) = uj (fr, €5) - (5)

Since (g;)i, is a Parseval frame for H, we have

1= Z [{gr, ;)" = Ufz [(frr €)= ulA
K1 P

8 PETER G. CASAZZA AND GITTA KUTYNIOK

This shows that u; = % for all j € {1,...,d}. Thus, using (5) and the definition of
(e;)¢_; and ();)9_,, it follows that g = S=zf, forall ke {1,...,n}. O

j=1 =0

This result together with Theorem 2.2 (i) implies the following property of our
algorithm.

Corollary 3.2. In each iteration of GGSP, in which a linearly dependent vector is
added, the algorithm computes the unique Parseval frame, which is closest to the frame
consisting of the already computed vectors and the added one.

Next we characterize those sequences of vectors applied to which the algorithm
computes an orthonormal basis. The proof will show that this is exactly the case,
when only the steps of the Gram—Schmidt orthogonalization are carried out.

Proposition 3.3. Let (f;); C H, n € N. The following conditions are equivalent.

(i) The sequence ®((f;)™,) is an orthonormal basis for span{(f;)i}.
(ii) The sequence (f;)", is linearly independent.

Proof. If (ii) holds, only line 6-8 of GGSP will be performed and these steps coincide
with Gram—Schmidt orthogonalization, hence produce an orthonormal system.

Now suppose that (ii) does not hold. This is equivalent to dim(span{(f;)",}) < n.
By Theorem 2.2, we have span{(f;)i~,;} = span{®((f;)"_;)}. This in turn implies
dim(span{®((fi)"1)}) < n. Thus ®((f;)7,) cannot form an orthonormal basis for
span{(fi)i1}- O

The mapping ® given by the procedure GGSP of a finite sequence in H to a Parseval
frame for a subspace of H is “almost” bijective in the following sense.

Proposition 3.4. Let ® be the mapping defined in the previous paragraph. Then ®
satisfies the following conditions.

(i) ® is surjective.

(ii) For each Parseval frame (g;)", C H, the set @~ ((g;)1;) equals

L if span{()i=} = span{(fy)i_.}.
(fl)?:l flz)‘fl_'_(pa)‘NE R+7 (6)
NS span{(fj)}_:ll}, otherwise

for some (ﬁ)?:l € 7 ((gi)i)-

Proof. 1t is easy to see that each step of the procedure GGSP is reversable which
implies (i).

To prove (ii) we first show that the set (6) is contained in ®~!((g;)™,). For this,
let (f;), be an element of the set (6). Notice that, by definition of (f;)! ,, we have
span{(f))¥_,} = span{(f))%_,} for all k € {1,...,n}. Since (f;)™, € ®((g:)",), we
only have to study the case span{(f;)¥='} # span{(f;)_,} for some k € {1,...,n}.

But then line 8 of GGSP will be performed. Let ®((f;)¥=') be denoted by (3:)¥=}. By

A GENERALIZATION OF GRAM-SCHMIDT ORTHOGONALIZATION 9

Theorem 2.2, the sequence (;)"= forms a Parseval frame for span{(f;)*='}. Hence
M+ =S M+ 0,313 M= S5 M e)35
IMi o= 25 O+ 0.005 1M = 255 e 87095
Fr = 252 (e 33035
i = 32520 e 0303

Y

which proves the first claim.

Secondly, suppose (f;); C H is not an element of (6). We claim that ®((f;)l,) #
@((fi)?:l), which finishes the proof. Let & € {1,...,n} be the largest number such
that f does not satisfy the conditions in (6). We have to study two cases.

Case 1: Suppose that f, # f5, but span{(f;)*='} = span{(f;)%_,}. Then in the kth
iteration line 12 will be performed and we obtain

1 1
hy =
SRRV R ANy

since fi # fr. Thus ®((f;)%,) # ®((f;)~,). If in the following iterations the condition
in line 7 always applies, we are done, since hy, and hy, are not changed anymore. Now
suppose that there exists [€ {1,...,n}, | > k with span{(f;)!Z1} = span{(fi)_,}.
Then in the Ith iteration hy, and hy, are modified in line 11. Since f, = f; by choice of
k, using a reformulation of line 11, we still have

fk = 7”67

1 1 - -

V31+ AP 1+ || f2

where P denotes the orthogonal projection onto span{f;}.

Case 2: Suppose that f, # Mfi + ¢ for each A € R* and ¢ € span{(f;)"*Z!}, and
also spanf{(fi)i=/} # span{(fi)f_1}. Let (h)i=! and (h)iZ! denote ®((f;)}=]) and
O((fi)i2h), respectively. If (h;)*=! = (h;)*Z}, the computation in line 8 in the kth
iteration yields

- fr = S5 (s)by 4 fi = X2 e)by s
k= — = ————= = =: Ng.
1 fe = 32523 oo Bl ™ e = S22t (s)|
If (hy)=} # (h;)"=!, then there exists some [€ {1,...,k — 1} with h; # h;. In both
situations these inequalities remain valid as it was shown in the preceding paragraph.
O

An important aspect of our algorithm is the redundancy of the computed frame.
Hence it is desirable to know in which way redundancy is preserved throughout the
algorithm. For this, we introduce a suitable definition of redundancy for sequences in
a finite-dimensional Hilbert space.

10 PETER G. CASAZZA AND GITTA KUTYNIOK

Definition 3.5. Let (f;)"; C H, n € N. Then the redundancy red ((f;)!,) of this set
is defined by

n

dim(span{(f;)7_,})’

red((fi)iz1) =

where we set % = 0.

Indeed in each iteration our algorithm preserves redundancy in an exact way.
Proposition 3.6. Let (f;)", C H, n € N. Then
red(®((f:)iz1)) = red ((fi)iz1)-

Proof. By Theorem 2.2, we have span{(f;)’_,} = span{®((f;)",)}. From this, the
claim follows immediately. O

4. IMPLEMENTATION OF THE ALGORITHM

We will first compare the numerical complexities of the Gram—Schmidt orthogo-
nalization and of GGSP. In a second part the procedure GGSP will be applied to
several numerical examples in order to visualize the modifications of the vectors while
performing the algorithm.

4.1. Numerical complexity. In this subsection it will turn out that the numerical
complexity of our algorithm coincides with the numerical complexity of the Gram-—
Schmidt orthogonalization. In particular, we will compare the complexity of the Gram—
Schmidt step in lines 6 and 8 of GGSP with the complexity of the step in lines 6, 11,
and 12 of GGSP, which is performed if the added vector is linearly dependent to the
already modified vectors.

For this, suppose the computation of a square root of a real number with some given
precision requires S elementary operations (additions, subtractions, multiplications,
and divisions). Let d denote the dimension of H, and let k& € {1,...,n}. An easy
computation shows that the number of elementary operations in lines 6 and 8 of GGSP
equals 3dk+ S, and the number of elementary operations in lines 6, 11, and 12 of GGSP
equals 10dk + (S+4)k—7d—3. Hence in both cases the numerical complexity is O(dk).
Only the constants are slightly larger in the new step, which is performed in case of
linear dependency. Thus both the Gram—Schmidt orthogonalization and GGSP possess
the same numerical complexity of O(dn?).

4.2. Graphical examples. In order to give further insight into the algorithm, in this
subsection we will study the different steps of GGSP for three examples. The single
steps of each example are illustrated by a diagram. In each of these the first image
in the uppermost row shows the positions of the vectors of the input sequence. Then
in the following images the remaining original vectors and the modified vectors are
displayed after each step of the loop in line 0 of GGSP. The original vectors are always
marked by a circle and the already computed new vectors are indicated by a filled
circle. The vector, which will be dealt with in the next step, is marked by a square.
Recall that, by Theorem 2.2, in each step the set of vectors marked with a filled circle
forms a Parseval frame for their linear span.

A GENERALIZATION OF GRAM-SCHMIDT ORTHOGONALIZATION 11

Input vectors 1. Step 2. Step
1 1 1 °
0.5 § 0.5 3 0.5 e
n]
-0.5 -0.5 -0.5
-1 -1 -1
-1 -05 0 0.5 1 -1 -05 0 0.5 1 -1 -05 0 0.5 1
3. Step 4. Step 5. Step
1 A4 1 (] 1)
0.5 s 05 0.5
. b *
L] []
0 ° 0 . O 0 . .
; 8 8
-0.5 -0.5 -0.5
-1 -1 -1
-1 -05 0 0.5 1 -1 -05 0 0.5 1 -1 -05 0 0.5 1
6. Step 7. Step Output vectors
1 . 1 . 1 .
0.5 0.5 0.5
o L[] °
[] L] °
0 R 0 oo, . 0 o .
a o
-0.5 ° -05 ? -05
-1 -1 -1
-1 -05 0 0.5 1 -1 -05 0 0.5 1 -1 -05 0 0.5 1
o Modified vector O Next vector to be moved O Original vector

FIGURE 1. GGSP applied to the sequence of vectors ((1,0.1), (1,0.2),
(1,0.3), (1,0.4), (1, —0.1), (1,-0.2), (1, —0.3), (1, —0.4))

In the first example we consider the sequence of vectors ((1,0.1), (1,0.2), (1,0.3),
(1,0.4), (1,-0.1), (1,-0.2), (1,—-0.3), (1,—0.4)). Figure 1 shows the modifications of
the vectors while performing the GGSP. The Gram—Schmidt orthogonalization, which
is performed in line 6-8 of GGSP, applies twice. In all the following steps the added
vector is linearly dependent to the already modified vectors. Therefore we have to go
through line 11 and 12, and the vectors already dealt with are newly rearranged in
each step.

Figure 2 shows the same example with a different ordering of the vectors. It is
no surprise that the generated Parseval frame is completely different from the one
obtained in Figure 1, since already the Gram—Schmidt orthogonalization is sensitive to
the ordering of the vectors.

12 PETER G. CASAZZA AND GITTA KUTYNIOK

Input vectors 1. Step 2. Step
1 1 1 .
0.5 % 0.5 % 0.5 %
0 0 0 S
8 8
g . .
-0.5 -0.5 -0.5
-1 -1 -1
-1 -05 0 0.5 1 -1 -05 0 0.5 1 -1 -05 0 0.5 1
3. Step 4. Step 5. Step
1 ° 1 [] 1 °
0.5 0.5 0.5
3 3 3
3 Q o U
0 o @ 0 o ® 0 .
o ° L]
-0.5 -0.5 -0.5
-1 -1 -1
-1 -05 0 0.5 1 -1 -05 0 0.5 1 -1 -05 0 0.5 1
6. Step 7. Step Output vectors
1 . 1 . 1 .
0.5 5 05 5 05
u} ° Y
[] ° []
0 bt 0 . 0 °®
°® o® []
[) [) °
-0.5 -0.5 -0.5
-1 -1 -1
-1 -05 0 0.5 1 -1 -05 0 0.5 1 -1 -05 0 0.5 1
L) Modified vector o Next vector to be moved @) Original vector

FIGURE 2. GGSP applied to the sequence of vectors ((1,—0.4),
(1,-0.3), (1, -0.2), (1,—0.1), (1,0.1), (1,0.2), (1,0.3), (1,0.4))

Both generated Parseval frames have in common that the first components of the
vectors are almost all positive. Intuitively this is not astonishing, since already all
vectors of the input sequence possess a positive first component.

The following example gives further evidence for the claim that the generated Par-
seval frame inherits the geometry of the input sequence in a particular way. Here
the vectors of the input sequence are located on the unit circle, in particular we
consider the sequence of vectors ((1,0), (v/0.5,/0.5), (0,1), (=v0.5,10.5), (—1,0),
(—v0.5, —=/0.5), (0, —1), (+/0.5, —+/0.5)). While performing the GGSP the vectors al-
most keep the geometry of a circle and the final Parseval frame is located on a slightly
deformed circle (see Figure 3). Notice that in the second step of the algorithm the sec-
ond vector is moved to the position of the third vector (0,1). Hence in all the following
computations these two vectors remain indistinguishable.

A GENERALIZATION OF GRAM-SCHMIDT ORTHOGONALIZATION 13

Input vectors 1. Step 2. Step
1 o 1 o 1 .
(o] o [e) o (o]
0.5 0.5 0.5
0 o 0] 0 °
-0.5 -0.5 -0.5
o o (@] o o o
-1 -1 -1
-1 -05 0 0.5 1 -1 -05 0 0.5 1 -1 -05 0 0.5 1
3. Step 4. Step 5. Step
1 1
u] [] ° °
0.5 0.5 L] .
L] L]
0 . (oL 1 .
-0.5 -0.5 0
o o (] (o] u] o
-1 -1 -1
-1 -05 0 0.5 1 -1 -05 0 0.5 1 -1 -05 0 0.5 1
6. Step 7. Step Output vectors
1 1 1
0.5 o 0.5 0.5
o o o ®
of-* ¢ of-* . 0 . *
[] []
-0.5 . -0.5 -0.5 . .
o [] o
-1 = -1 -1
-1 -05 0 0.5 1 -1 -05 0 0.5 1 -1 -05 0 0.5 1
® Modified vector O Next vector to be moved O Original vector

FIGURE 3. GGSP applied to the sequence of vectors ((1,0), (1/0.5,
v0.5), (0,1), (=v0.5,4/0.5), (=1,0), (—v/0.5,—+v/0.5), (0,—1), (0.5,
—/0.5))

The graphical examples seem to indicate that to a certain extent output sequences
inherit their geometry from the input sequence. For applications it would be especially
important to characterize those input sequences, which generate equal norm Parseval
frames or more generally “almost” equal norm Parseval frames (compare [2, Problem

4.4)).

ACKNOWLEDGMENTS

The majority of the research for this paper was performed while the first author
was visiting the Department of Mathematics at the University of Paderborn. This
author thanks this department for its hospitality and support during this visit. The
first author also acknowledges support from NSF Grant DMS 0405376.

14 PETER G. CASAZZA AND GITTA KUTYNIOK

The second author acknowledges support from DFG Research Fellowship KU 1446
and Forschungspreis der Universitat Paderborn 2003.

The authors are indebted to the referee for valuable comments and suggestions which
improved the paper.

REFERENCES

[1] J.J. Benedetto and M. Fickus, Finite normalized tight frames, Adv. Comput. Math. 18 (2003),
357-385.

[2] P.G. Casazza, Custom building finite frames, In Wavelets, frames and operator theory, 61-86,
Contemp. Math., 345, Amer. Math. Soc., Providence, RI, 2004.

[3] P.G. Casazza, The art of frame theory, Taiwanese J. of Math. 4 (2000), 129-201.

[4] P.G. Casazza and J. Kovacevié¢, Equal-norm tight frames with erasures, Adv. Comput. Math. 18
(2003), 387-430.

[5] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhduser, Boston, 2003.

[6] V.K. Goyal, J. Kovacevié¢, and J.A. Kelner, Quantized frame expansions with erasures, Appl.
Comput. Harmon. Anal. 10 (2001), 203-233.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, COLUMBIA, MISSOURI 65211, USA
E-mail address: pete@math.missouri.edu

MATHEMATICAL INSTITUTE, JUSTUS-LIEBIG-UNIVERSITY GIESSEN, 35392 GIESSEN, GERMANY
E-mail address: gitta.kutyniok@math.uni-giessen.de

