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Abstract. In this paper we introduce and study a concept to assign a shift-invariant
weighted Gabor system to an irregular Gabor system while preserving special properties
such as being a frame. First we extend the notion of Beurling density to weighted subsets of
Rd. We then derive a useful reinterpretation of this definition by using arbitrary piecewise
continuous, positive functions in the amalgam space W (L∞, L1) to measure weighted Beurl-
ing density, thereby generalizing a result by Landau in the non-weighted situation. Using, in
addition, decay properties of the short-time Fourier transform of functions contained in the
modulation space M1(Rd), we establish a fundamental relationship between the weighted
Beurling density of the set of indices, the frame bounds, and the norm of the generator for
weighted Gabor frames. Finally, we prove that the relation among an irregular Gabor sys-
tem and its shift-invariant counterpart imposes special conditions on the weighted Beurling
densities of their sets of indices.

1. Introduction

Shift-invariance, i.e., invariance under integer translations, is a desirable feature for many
applications. Moreover, shift-invariance has been extensively employed as a theoretical tool
to study regular Gabor systems {e2πi〈x,βn〉g(x − αk) : k, n ∈ Zd}, g ∈ L2(Rd), α, β > 0 (see,
for example, [10, 14]). In this paper we will study this concept in a much more general setting
motivated by the following observation. Provided that {e2πi〈x,βn〉g(x−αk) : k, n ∈ Zd} forms
a frame for L2(Rd), then each f ∈ L2(Rd) can be reconstructed in a numerically stable way
from the sampling points αZd × βZd of the short-time Fourier transform Vgf : R2d → C,

Vgf(a, b) =
〈

f, e2πi〈·,b〉g(· − a)
〉

. However, sampling points may vary in practice, and the

question arises whether and how substituting the subset αZd × βZd by an arbitrary subset
Λ of R2d affects results concerning shift-invariance. Therefore, our driving motivation is to
introduce a concept which assigns a shift-invariant Gabor system to an arbitrary irregular
Gabor system while preserving special properties; in this sense capturing the spirit of the
relation between affine and quasi-affine systems (see, for instance, [4]). By considering the
similar situation in wavelet analysis it becomes evident that the shift-invariant counterpart
necessarily has to be equipped with weights. Therefore the construction of such associated
shift-invariant Gabor systems leads to the introduction of more general weighted irregular
Gabor systems

G(g, Λ, w) := {w(a, b)
1
2 e2πi〈x,b〉g(x − a) : (a, b) ∈ Λ},
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where g ∈ L2(Rd), Λ ⊂ R2d, and w : Λ → R+.

Density conditions have turned out to be an especially useful and elegant tool for the
study of irregular Gabor systems [2, 3, 13]. The densities employed for Gabor systems are
the lower and upper Beurling densities, which are defined for an arbitrary countable subset of
Rd. Therefore, in order to study the relationship between an irregular Gabor system G(g, Λ)
and its associated shift-invariant counterpart G(g, ΛSI, w), where ΛSI is in some sense the
“smallest” shift-invariant set containing Λ, we will focus on the conditions which are imposed
on the densities of both systems.

We first show that Beurling density can not only be measured by computing the average
over the number of points of a set contained in cubes x + h[0, 1)d, x ∈ Rd, h > 0, but also
by computing the weighted sum over those points with respect to an arbitrary piecewise
continuous, positive function in the amalgam space W (L∞, L1). In fact, we show that for
each piecewise continuous f ∈ W (L∞, L1) with f ≥ 0, f 6= 0, the upper Beurling density
D+(Λ) of a set Λ ⊂ Rd satisfies

D+(Λ) = ‖f‖−1
1 lim sup

h→∞
sup
x∈Rd

∑

λ∈Λ f(λ+x
h

)

hd

and the lower Beurling density satisfies a similar formula, thereby generalizing a result by
Landau [12], which established this property for the functions f = χB, where B ⊂ Rd

is a compact set of measure 1 whose boundary has measure zero. Our result even holds
for a generalization of Beurling density to weighted subsets. In particular, it implies that
for functions contained in the modulation space M1(Rd) the associated short-time Fourier
transform can serve as a measuring function for the (weighted) Beurling densities.

By employing this new interpretation of (weighted) Beurling density and the decay proper-
ties of the short-time Fourier transform of M1-functions, we will prove that the fundamental
relationship

(1) A ≤ D−(Λ, w) ‖g‖2
2 ≤ D+(Λ, w) ‖g‖2

2 ≤ B

between the weighted Beurling densities D−(Λ, w),D+(Λ, w) of the set of indices Λ with
weight function w, the frame bounds A, B, and the norm of the generator g holds for weighted
Gabor frames G(g, Λ, w). This result can be shown to contain [2, Thm. 4.2] and [5, Subsec.
3.4.1] as special cases. As a corollary we obtain that the weighted Beurling density of a tight
weighted Gabor frame necessarily has to be uniform, i.e., D−(Λ, w) = D+(Λ, w). Recently,
some results in the same spirit have been derived for a class of wavelet frames [11] and for
frames of windowed exponentials [9].

The relationship (1) then leads to constraints imposed on the weighted densities of a Gabor
system and its associated shift-invariant weighted Gabor system. In particular, we consider
sets Λ ⊂ R2d and weight functions w : ΛSI → R+, which satisfy that there exists a function
g ∈ L2(Rd) such that G(g, Λ) and G(g, ΛSI , w) are tight frames with the same frame bound.
We prove that this hypothesis already implies that both Λ and (ΛSI , w) have uniform density
and

(2) D(Λ) = A ‖g‖−2
2 = D(ΛSI , w).
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Finally, we show that for a given Λ ⊂ R2d with positive lower and finite upper density there
always exists a weight function w : ΛSI → R+ which satisfies (2).

This paper is organized as follows. In Section 2 we introduce some notion and state some
preliminary results. In Section 3 we first study relations between certain Littlewood–Paley
type inequalities and density conditions. These are employed in Subsection 3.2 to derive a
useful reinterpretation of weighted Beurling density (Theorem 3.5). Finally, in Section 4 we
study shift-invariant weighted Gabor systems. The fundamental relationship for weighted
Gabor frames between the weighted Beurling density, the frame bounds, and the norm of the
generator (Theorem 4.2) is established in Subsection 4.1. We then give a precise definition of
an associated shift-invariant weighted Gabor system (Subsection 4.2). Finally, in Subsection
4.3 we prove necessary density conditions for the sets of indices of a Gabor system and its
shift-invariant counterpart (Theorem 4.11).

2. Notation and preliminary results

2.1. Weighted Beurling density. Beurling density is a measure of the “average” number
of points of a set that lie inside a unit cube. Here we extend this notion to the situation of
weighted subsets of Rd.

For h > 0 and x = (x1, . . . , xd) ∈ Rd, we let Qh(x) denote the cube centered at x with

side length h, i.e., Qh(x) =
∏d

j=1

[

xj −
h
2
, xj + h

2

)

. If x = 0, we often just write Qh instead

of Qh(0). Given a set Λ of points in Rd and a weight function w : Λ → R+, we define the
weighted number of elements of Λ lying in a subset K of Λ to be #w(K) =

∑

x∈K w(x).
Then the upper weighted (Beurling) density of the pair (Λ, w) is defined by

D+(Λ, w) = lim sup
h→∞

supx∈Rd #w(Λ ∩ Qh(x))

hd
,

and the lower weighted (Beurling) density of (Λ, w) is

D−(Λ, w) = lim inf
h→∞

infx∈Rd #w(Λ ∩ Qh(x))

hd
.

If D−(Λ, w) = D+(Λ, w), then we say that (Λ, w) has uniform weighted (Beurling) density
and denote this density by D(Λ, w). If w = 1, this reduces to the standard definition of
Beurling density and, in this case, we just write D+(Λ) and D−(Λ).

The following is a useful reinterpretation of finite upper and positive lower weighted density
conditions. The first lemma is an extension of [3, Lem. 2.3] to weighted density. Its proof
uses the same ideas as the proof in [3], therefore we omit it.

Lemma 2.1. Let Λ ⊂ Rd and w : Λ → R+. Then the following conditions are equivalent.

(i) D+(Λ, w) < ∞.
(ii) There exist h > 0 and N < ∞ such that #w(Λ ∩ Qh(x)) < N for all x ∈ Rd.
(iii) For each h > 0, there exists N = N(h) < ∞ such that #w(Λ ∩ Qh(x)) < N for all

x ∈ Rd.

A similar result holds for the case of positive lower weighted density. The proof for the
non-weighted case can be found in [1].
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Lemma 2.2. Let Λ ⊂ Rd and w : Λ → R+. Then the following conditions are equivalent.

(i) D−(Λ, w) > 0.
(ii) There exist h, N > 0 such that #w(Λ ∩ Qh(x)) > N for all x ∈ Rd.

2.2. Notation for frames and Bessel sequences. A system {fi}i∈I in L2(Rd) is called
a frame for L2(Rd), if there exist 0 < A ≤ B < ∞ (lower and upper frame bounds) such
that A ‖f‖2

2 ≤
∑

i∈I |〈f, fi〉|
2 ≤ B ‖f‖2

2 for all f ∈ L2(Rd). If A, B can be chosen such that
A = B, then {fi}i∈I is a tight frame, and if we can take A = B = 1, it is called a Parseval
frame. A Bessel sequence {fi}i∈I is only required to fulfill the upper frame bound estimate
but not necessarily the lower estimate.

2.3. Amalgam spaces and modulation spaces. Both amalgam spaces and modulation
spaces play an essential role in studying Gabor systems and the short-time Fourier transform.
In this paper we employ the following special cases of amalgam and modulation spaces. For
more details on amalgam and modulation spaces we refer the reader to [7] and [8].

Given 1 ≤ p < ∞, a function f : Rd → C belongs to the amalgam space W (L∞, Lp) if

‖f‖W (L∞,Lp) =

(

∑

k∈Zd

(ess supx∈Q1(k)|f(x)|)p

)
1
p

< ∞.

The amalgam space W (C, Lp) is the closed subspace of W (L∞, Lp) consisting of the contin-
uous functions in W (L∞, Lp).

Let γ(x) = 2
d
4 e−π‖x‖2

be the Gaussian function. Then the modulation space M1(Rd)
consists of all tempered distributions f ∈ S ′(Rd) such that ‖f‖M1 = ‖Vγf‖1 < ∞. In fact,
M1(Rd) ⊆ L2(Rd).

If f, g ∈ L2(Rd), then Vgf is a continuous L2-function, and ‖Vgf‖2 = ‖g‖2 ‖f‖2. Further
notice that |Vgf(z)|2 = |Vfg(−z)|2 for each z ∈ R2d. In the sequel, for z = (z1, z2) ∈ R2d and
g ∈ L2(Rd), we will use the notation ρ(z)g(x) = e2πi〈x,z2〉g(x − z1), x ∈ Rd.

The following lemma shows that, if we require that the window g lies in M1(Rd), the
short-time Fourier transform satisfies additional decay properties.

Lemma 2.3. Let g ∈ M1(Rd). Then |Vgf |
2 ∈ W (C, L1) for each f ∈ L2(Rd).

Proof. By [7, Prop. 12.1.11], g ∈ M1(Rd) implies Vgg ∈ W (L∞, L1). Fix f ∈ L2(Rd). Then

we have Vgf ∗ Vgg = ‖g‖2
2 Vgf , since

(Vgf ∗ Vgg)(z) =

∫

R2d

Vgf(z̃) Vg(ρ(z)g)(z̃) d(z̃) = ‖g‖2
2 〈f, ρ(z)g〉 = ‖g‖2

2 Vgf(z).

By [8, Cor. 11.8.4], this implies

Vgf = ‖g‖−2
2 (Vgf ∗ Vgg) ∈ L2(Rd) ∗ W (L∞, L1) ⊆ W (L∞, L2).

Since Vgf is continuous, the claim follows. �
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3. Weighted Beurling density

Considering the definition of Beurling density, we may ask whether we can also measure
density using a different shape than cubes. In fact, we will show that we can replace χQh(0)

by an arbitrary piecewise continuous, positive function in W (L∞, L1), yet still derive the
same density. We will say that a function f : Rd → C is piecewise continuous if there exists
a tiling {Bn}n∈N of Rd of measurable sets with non-empty interiors whose boundaries have
measure zero such that f |Bn

is continuous for each n ∈ N.

3.1. Littlewood–Paley type inequalities and weighted Beurling density. First we
study relations between certain Littlewood–Paley type inequalities and weighted Beurling
density. Although interesting in their own right, our main purpose is to employ these results
in the proof of Theorem 3.5.

We start with some technical lemmas.

Lemma 3.1. Let Λ ⊂ Rd, w : Λ → R+, and f ∈ W (L∞, L1) be piecewise continuous with
f ≥ 0, f 6= 0. If there exists B < ∞ such that

∑

λ∈Λ

w(λ)f(λ + x) ≤ B for all x ∈ Rd,

then D+(Λ, w) < ∞.

Proof. By hypothesis, since f ≥ 0 and f is piecewise continuous, there exist some x0 ∈ Rd

and h0 > 0 such that f(x) ≥ δ > 0 for all x ∈ Qh0(x0). Towards a contradiction assume
that D+(Λ, w) = ∞. Applying Lemma 2.1, for each n ∈ N, there exists some yn ∈ Rd with

#w(Λ ∩ Qh0(yn)) ≥ n.

Hence,
∑

λ∈Λ

w(λ)f(λ + (x0 − yn)) ≥
∑

λ∈Λ∩Qh0
(yn)

w(λ)f(λ + (x0 − yn)) ≥ δ n,

a contradiction. �

Lemma 3.2. Let Λ ⊂ Rd, w : Λ → R+, and let f ∈ W (L∞, L1) be piecewise continuous
with f ≥ 0. If D+(Λ, w) < ∞, then for each ε > 0 there exists r < ∞ such that

∑

λ∈Λ

w(λ) f(λ + x) χRd\Qr
(λ + x) < ε for all x ∈ Rd.

Proof. Fix ε > 0. Since D+(Λ, w) < ∞, Lemma 2.1 implies the existence of some N < ∞
such that #w(Λ ∩ Q1(x)) < N for all x ∈ Rd. Since f ∈ W (L∞, L1), we can choose r ∈ N

such that
∑

k∈Zd\Qr−1

sup
x∈Q1(k)

f(x) <
ε

N
.
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Therefore
∑

λ∈Λ

w(λ) f(λ + x) χRd\Qr
(λ + x) =

∑

λ∈Λ∩(Rd\Qr(−x))

w(λ) f(λ + x)

≤
∑

k∈Zd\Qr−1

∑

λ∈Λ∩Q1(k−x)

w(λ) f(λ + x)

< N
∑

k∈Zd\Qr−1

sup
y∈Q1(k)

f(y)

< ε. �

We can now state and prove the main result of this subsection.

Theorem 3.3. Let Λ ⊂ Rd, w : Λ → Rd, and let f ∈ W (L∞, L1) be piecewise continuous
with f ≥ 0. If

(3) A ≤
∑

λ∈Λ

w(λ) f(λ + x) ≤ B for all x ∈ Rd,

then

A ≤ D−(Λ, w) ‖f‖1 ≤ D+(Λ, w) ‖f‖1 ≤ B.

Proof. We first claim that for each ε > 0 there exists r < ∞ with

(4) A − ε ≤
∑

λ∈Λ

w(λ) f(λ + x) χQr
(λ + x) ≤ B for all x ∈ Rd.

To prove this, fix some ε > 0. Noting that D+(Λ, w) < ∞ by Lemma 3.1, the application of
Lemma 3.2 implies that there exists r < ∞ with

∑

λ∈Λ

w(λ) f(λ + x) χRd\Qr
(λ + x) < ε for all x ∈ Rd.

Combining this with (3) proves (4).
Let ε > 0. Without loss of generality we can assume that r is large enough so that

‖f‖1 −
∫

Qr
f(x) dx < ε. Fix y ∈ Rd and h > r. Integrating each term in (4) over the box

Qh(−y) yields

(5) (A − ε)hd ≤
∑

λ∈Λ

w(λ)

∫

Qh(−y)

f(λ + x) χQr
(λ + x) dx ≤ Bhd.

Then we make the decomposition

∑

λ∈Λ

w(λ)

∫

Qh(−y)

f(λ + x) χQr
(λ + x) dx = I1(y, h) − I2(y, h) + I3(y, h) + I4(y, h),
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where

I1(y, h) =
∑

λ∈Λ∩Qh−r(y)

w(λ)

∫

Rd

f(λ + x) χQr
(λ + x) dx,

I2(y, h) =
∑

λ∈Λ∩Qh−r(y)

w(λ)

∫

Rd\Qh(−y)

f(λ + x) χQr
(λ + x) dx,

I3(y, h) =
∑

λ∈Λ∩(Qh+r(y)\Qh−r(y))

w(λ)

∫

Qh(−y)

f(λ + x) χQr
(λ + x) dx,

I4(y, h) =
∑

λ∈Λ∩(Rd\Qh+r(y))

w(λ)

∫

Qh(−y)

f(λ + x) χQr
(λ + x) dx.

Since D+(Λ, w) < ∞, by Lemma 2.1 there exists N < ∞ such that for each s > 0 we have
#w(Λ ∩ Qs(x0)) ≤ (s + 1)d supx∈Rd #w(Λ ∩ Q1(x)) < (s + 1)dN for all x0 ∈ Rd.

We first observe that

I1(y, h) =
∑

λ∈Λ∩Qh−r(y)

w(λ)

∫

Qr

f(x) dx = #w(Λ ∩ Qh−r(y))

∫

Qr

f(x) dx,

and hence, by the choice of r,
∣

∣I1(y, h) − #w(Λ ∩ Qh−r(y)) ‖f‖1

∣

∣ < #w(Λ ∩ Qh−r(y)) ε.

The contribution of I2(y, h) to the sum in (5) is

I2(y, h) =
∑

λ∈Λ∩Qh−r(y)

w(λ)

∫

(Rd\Qh(λ−y))∩Qr

f(x) dx = 0,

since ‖λ − y‖∞ ≤ h−r
2

, and hence (Rd\Qh(λ−y))∩Qr has Lebesgue measure zero. The term
I3(y, h) can be estimated as follows:

I3(y, h) =
∑

λ∈Λ∩(Qh+r(y)\Qh−r(y))

w(λ)

∫

Qh(−y)∩Qr(−λ)

f(λ + x) dx

≤ #w(Λ ∩ (Qh+r(y)\Qh−r(y))) ‖f‖1

< ((h + r + 1)d − (h − r + 1)d)N ‖f‖1 .

Finally, the contribution of I4(y, h) is

I4(y, h) =
∑

λ∈Λ∩(Rd\Qh+r(y))

w(λ)

∫

Qh(λ−y)∩Qr

f(x) dx = 0,

since ‖λ − y‖∞ ≥ h+r
2

, and hence Qh(λ − y) ∩ Qr has Lebesgue measure zero.
Combining the above estimates, we see that

(A−ε)hd ≤ #w(Λ∩Qh−r(y))(‖f‖1 +ε)+
(

(h+r+1)d− (h−r+1)d
)

N ‖f‖1 for all y ∈ Rd.
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Therefore

A − ε

= lim inf
h→∞

(A − ε)hd

hd

≤ lim inf
h→∞

inf
y∈Rd

#w(Λ ∩ Qh−r(y))(‖f‖1 + ε)

hd
+ lim sup

h→∞

((h + r + 1)d − (h − r + 1)d)N ‖f‖1

hd

= D−(Λ, w)(‖f‖1 + ε).

Now letting ε go to zero yields A ≤ D−(Λ, w) ‖f‖1. The second claim D+(Λ, w) ‖f‖1 ≤ B

can be treated similarly. The theorem is proved. �

3.2. Equivalent definition of weighted Beurling density. The precise definition of the
general notion of density with respect to an arbitrary piecewise continuous, positive function
in W (L∞, L1) is as follows. As usual, we define the dilation operator Dh on L1(Rd) by
Dhf(x) = 1

hd f(x
h
).

Definition 3.4. Let f ∈ W (L∞, L1) be piecewise continuous with f ≥ 0, f 6= 0, and let
Λ ⊂ Rd, w : Λ → R+ be given. Then the upper weighted f -density of the pair (Λ, w) is

D+
f (Λ, w) = ‖f‖−1

1 lim sup
h→∞

sup
x∈Rd

∑

λ∈Λ

w(λ)Dhf(λ + x)

and the lower weighted f -density of (Λ, w) is

D−
f (Λ, w) = ‖f‖−1

1 lim inf
h→∞

inf
x∈Rd

∑

λ∈Λ

w(λ)Dhf(λ + x).

The Beurling density is indeed a special case of this definition, since for Λ ⊂ Rd and
w : Λ → R+, the lower weighted Beurling density D−(Λ, w) coincides with D−

χ
[0,1)d

(Λ, w) and

the upper density D+(Λ, w) coincides with D+
χ

[0,1)d
(Λ, w).

The following result now shows that in fact both definitions coincide for any f . In par-
ticular, D+

f (Λ, w) and D−
f (Λ, w) do not depend on the function f . This result contains [12,

Lem. 4] as a special case.

Theorem 3.5. Let f ∈ W (L∞, L1) be piecewise continuous with f ≥ 0, f 6= 0. Then, for
all Λ ⊂ Rd and w : Λ → R+, we have

D−
f (Λ, w) = D−(Λ, w) and D+

f (Λ, w) = D+(Λ, w).

Proof. We will only prove D+
f (Λ, w) = D+(Λ, w). The other claim can be treated in a similar

manner.
First we observe that, without loss of generality, we can assume that ‖f‖1 = 1 by rescaling.

Now, towards a contradiction, assume that D+
f (Λ, w) < D+(Λ, w). Then there exist δ > 0

and h̃ > 0 such that for all h ≥ h̃ and x ∈ Rd,
∑

λ∈Λ

w(λ)Dhf(λ + x) ≤ D+(Λ, w) − δ.
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This in turn implies that there exist ε ∈ (0, δ), (hn)n∈N ⊆ R+ with hn → ∞ as n → ∞, and

(xn)n∈N ⊆ Rd such that for all h ≥ h̃, n ∈ N, and x ∈ Rd,

(6)
∑

λ∈Λ

w(λ)Dhf(λ + x) ≤
#w(Λ ∩ Qhn

(xn))

hd
n

− ε.

Without loss of generality we can choose (hn)n∈N and (xn)n∈N so that

(7)

∣

∣

∣

∣

#w(Λ ∩ Qhn
(xn))

hd
n

−D+(Λ, w)

∣

∣

∣

∣

<
ε

2
for all n ∈ N.

Since f ∈ W (L∞, L1), we also have Dhf ∈ W (L∞, L1) for all h > 0. Thus we can apply
Theorem 3.3 to (6), which yields

D+(Λ, w) ‖Dhf‖1 ≤
#w(Λ ∩ Qhn

(xn))

hd
n

− ε for all n ∈ N.

By (7) and using that ‖Dhf‖1 = 1,

D+(Λ, w) ≤ D+(Λ, w) −
ε

2
,

a contradiction. Thus D+
f (Λ, w) ≥ D+(Λ, w).

To prove D+
f (Λ, w) ≤ D+(Λ, w), we first study this claim for a certain step function. Let

ν > 0, set ck = supx∈Qν(νk) f(x) for each k ∈ Zd, and define g : Rd → R+ by

g =
∑

k∈Zd

ckχQν(νk).

Let ε > 0. Since f ∈ W (L∞, L1), we have ‖g‖1 < ∞ regardless of the value of ν. Choose ν

so that ‖g − f‖1 < ε. Let K ⊂ Rd be compact. Then there exists a compact K̃ ⊆ Rd such
that

(gχK)(x) ≤
∑

k∈Zd∩K̃

ckχQν(νk)(x) for all x ∈ Rd.

Since ‖f‖1 = 1, we further have

νd
∑

k∈Zd∩K̃

ck ≤ ‖g‖1 ≤ 1 + ε.

Collecting these arguments, for h > 0, we obtain

sup
x∈Rd

∑

λ∈Λ

w(λ)Dh(gχK)(λ + x) ≤ sup
x∈Rd

∑

λ∈Λ w(λ)
∑

k∈Zd∩K̃ ckχQν(νk)(
λ+x

h
)

hd

= sup
x∈Rd

∑

k∈Zd∩K̃ ck

∑

λ∈Λ w(λ)χhQν(νk)−x(λ)

hd

≤
∑

k∈Zd∩K̃

ck sup
x∈Rd

∑

λ∈Λ w(λ)χQhν(hνk−x)(λ)

hd
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= νd
∑

k∈Zd∩K̃

ck sup
x∈Rd

#w(Λ ∩ Qhν(x))

hdνd

≤ (1 + ε) sup
x∈Rd

#w(Λ ∩ Qhν(x))

hdνd
.(8)

We assume that D+(Λ, w) < ∞, since otherwise the claim is already proved. By Lemma
3.2, there exists some rh < ∞ with

∑

λ∈Λ

w(λ) Dh(fχRd\Qrh
)(λ + x) < ε for all x ∈ Rd,

which implies

(9)

∣

∣

∣

∣

∣

∑

λ∈Λ

w(λ) Dhf(λ + x) −
∑

λ∈Λ

w(λ) Dh(fχQrh
)(λ + x)

∣

∣

∣

∣

∣

< ε for all x ∈ Rd.

Using (9), the fact that f ≤ g, and (8), we obtain

sup
x∈Rd

∑

λ∈Λ

w(λ) Dhf(λ + x) ≤ sup
x∈Rd

∑

λ∈Λ

w(λ) Dh(fχQrh
)(λ + x) + ε

≤ sup
x∈Rd

∑

λ∈Λ

w(λ) Dh(gχQrh
)(λ + x) + ε

≤ (1 + ε) sup
x∈Rd

#w(Λ ∩ Qhν(x))

hdνd
+ ε.

Applying the limsup as h → ∞ yields

D+
f (Λ, w) ≤ (1 + ε)D+(Λ, w) + ε.

Letting ε go to zero therefore finishes the proof. �

Provided that g ∈ M1(Rd), we might use the associated short-time Fourier transform to
measure density.

Corollary 3.6. Let g ∈ M1(Rd). Then, for all f ∈ L2(Rd), Λ ⊂ R2d, and w : Λ → R+, we
have

D−
|Vgf |2(Λ, w) = D−(Λ, w) and D+

|Vgf |2(Λ, w) = D+(Λ, w).

Proof. This follows immediately from Lemma 2.3 and Theorem 3.5. �

If we are only interested in estimates and are equipped with an upper and lower bound for
∑

λ∈Λ w(λ)D1f(λ + x) uniformly in x ∈ Rd, this immediately yields estimates for D−
f (Λ, w)

and D+
f (Λ, w).

Corollary 3.7. Let f ∈ W (L∞, L1) be piecewise continuous with f ≥ 0, and let Λ ⊂ Rd,
w : Λ → R+. If

A ≤
∑

λ∈Λ

w(λ) f(λ + x) ≤ B for all x ∈ Rd,
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then

A ≤ D−
f (Λ, w) ‖f‖1 ≤ D+

f (Λ, w) ‖f‖1 ≤ B.

Proof. Applying Theorem 3.3 and Theorem 3.5 yields the claim. �

4. Shift-invariant weighted irregular Gabor systems

Turning a Gabor frame into a shift-invariant weighted Gabor frame imposes conditions
not only on the set of indices of the original frame, but also on the relation between the
densities of both sets of indices. These issues will be discussed in the following subsections.
Moreover, we will study whether the necessary condition we derive can be fulfilled, i.e.,
whether appropriate weight functions can be constructed.

4.1. A fundamental relationship for weighted Gabor systems. Provided that a weigh-
ted Gabor system forms a frame, we will derive a fundamental relationship between the
weighted Beurling density of its set of indices, the frame bounds, and the norm of the gen-
erator.

First, however, we will require the following technical lemma. Provided that a Gabor
system forms a frame, it shows that the associated short-time Fourier transform satisfies a
certain inequality of Littlewood–Paley type. The unweighted case is well-known.

Lemma 4.1. Let Λ ⊂ R2d and w : Λ → R+. Let g ∈ L2(Rd) be such that G(g, Λ, w) is a
frame for L2(Rd) with frame bounds A and B. Then for all f ∈ L2(Rd) with ‖f‖2 = 1, we
have

A ≤
∑

λ∈Λ

w(λ) |Vgf(λ + z)|2 ≤ B for all z ∈ R2d.

Proof. Since G(g, Λ, w) is a frame,

A ‖f0‖
2
2 ≤

∑

λ∈Λ

w(λ) |〈f0, ρ(λ)g〉|2 ≤ B ‖f0‖
2
2 for all f0 ∈ L2(Rd).

Fix f ∈ L2(Rd) with ‖f‖2 = 1. Choosing f0 = ρ(−z)f , where z ∈ R2d is arbitrary, yields

A ≤
∑

λ∈Λ

w(λ) |〈ρ(−z)f, ρ(λ)g〉|2 =
∑

λ∈Λ

w(λ) |〈f, ρ(λ + z)g〉|2 ≤ B.

Using the definition of Vgf finishes the proof. �

Notice that, provided g ∈ M1, the tails of the sum considered in Lemma 4.1 are arbitrarily
small due to Lemmas 2.3 and 3.2.

The fundamental relationship between the weighted Beurling density of the set of indices,
the frame bounds, and the norm of the generator of weighted Gabor frames now follows from
all our previous discussions.

Theorem 4.2. Let g ∈ L2(Rd), Λ ⊂ R2d, and w : Λ → R+. If G(g, Λ, w) is a frame for
L2(Rd) with frame bounds A and B, then

A ≤ D−(Λ, w) ‖g‖2
2 ≤ D+(Λ, w) ‖g‖2

2 ≤ B.
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Proof. Fix f ∈ M1(Rd) with ‖f‖2 = 1, and consider |Vgf |
2. Applying Lemma 4.1, Lemma

2.3, Corollary 3.7, and Corollary 3.6 to this function, and using the facts that |Vgf(z)|2 =

|Vfg(−z)|2 for z ∈ R2d and that ‖|Vgf |
2‖1 = ‖f‖2

2 ‖g‖
2
2, then settles the claim. �

The previous theorem implies that a weighted Gabor system can only form a tight frame
when the weighted density of its set of indices is uniform.

Corollary 4.3. Let g ∈ L2(Rd), Λ ⊂ R2d, and w : Λ → R+ be such that G(g, Λ, w) is a tight
frame for L2(Rd) with frame bound A. Then (Λ, w) has uniform weighted density, and

A = D(Λ, w) ‖g‖2
2 .

In the following remark we point out the difference between the situation of weighted and
non-weighted Gabor frames.

Remark 4.4. Let g ∈ L2(Rd), Λ ⊂ R2d, and w : Λ → R+ be such that G(g, Λ, w) is a frame for
L2(Rd). First we observe that this forces the weights to be bounded from above. To prove
this, towards a contradiction assume that there exists a sequence (λn)n∈N ⊆ Λ such that
w(λn) ≥ n for all n ∈ N. Then #w(Λ∩Qh(λn)) ≥ n, and hence supx∈Rd #w(Λ∩Qh(x)) = ∞.
It follows that D+(Λ, w) = ∞. But, by Theorem 4.2, this implies that G(g, Λ, w) does not
form a frame for L2(Rd), which is a contradiction. Thus w is bounded from above.

However, w need not necessarily be bounded from below. This can easily be seen by
starting with a frame G(g, Λ, w), choosing one element from Λ, and then adding infinitely
many repetitions of this element to Λ, with corresponding weights that decrease to zero. If
the weights decrease quickly enough, then the new system will still be a frame for L2(Rd).
By perturbing the new points, less trivial examples can also be generated. Thus we can
construct weighted Gabor frames with arbitrarily small weights.

It seems natural to ask whether each weighted Gabor frame contains a subset that is a
non-weighted (irregular) Gabor frame. Considering the procedure of repeating one element
of the set of indices, it is obvious that deleting those frame elements with small weights below
a threshold will lead to a non-complete Gabor system in most cases. However, there might
exist more sophisticated ways to delete certain elements from a weighted Gabor frame. We
suspect that this can be done.

In this context there exists a very interesting approach towards non-uniform sampling the-
ory by employing weights due to Feichtinger, Gröchenig, and Strohmer [6]. They introduced
the so-called “adaptive weights method” to compensate for local variations of the set of
sampling points, thereby deriving “superfast” algorithms for the reconstruction from these
points. This should be compared to the fact that the introduction of weights for the study
of shift-invariant Gabor frames can be seen as a consequence of enlarging the set of indices,
which the added weights have to compensate for.

4.2. Existence of an associated discrete shift-invariant set. Given a Gabor system
G(g, Λ), we are interested in the existence and properties of the smallest discrete set Λ̃ ⊂ R2d

containing Λ so that G(g, Λ̃) is shift-invariant, i.e., TkG(g, Λ̃) ⊆ G(g, Λ̃) for all k ∈ Zd, where
Tk : L2(Rd) → L2(Rd) denotes the shift operator Tkf(x) = f(x − k). As usual we call a

subset Λ̃ of R2d discrete, if for each λ ∈ Λ̃ there exists an open set U ⊂ R2d with U∩Λ̃ = {λ}.
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Our first result shows that we indeed have an explicit representation of the set under
consideration.

Proposition 4.5. Let g ∈ L2(Rd) and Λ ⊂ R2d. Further let ∆ ⊂ R2d be such that G(g, ∆)
is a shift-invariant system. If Λ ⊆ ∆, then

⋃

k∈Zd Λ + (k, 0) ⊆ ∆.

Proof. Fix (a, b) ∈ R2d and k ∈ Z. Then

Tk(ρ(a, b)g)(x) = e2πibxg(x − (k + a)) = (ρ(a + k, b)g)(x) = (ρ((a, b) + (k, 0))g)(x).

Thus, provided that Λ ⊆ ∆ and G(g, ∆) is a shift-invariant system, then (a, b) + (k, 0) ∈ ∆
for all (a, b) ∈ Λ and k ∈ Zd. This proves the lemma. �

This shows that, given a subset Λ of R2d, there exists a canonical larger subset, which
provides us with a shift-invariant Gabor system.

Definition 4.6. Let Λ be a subset of R2d. Then we define the associated shift-invariant set
ΛSI by ΛSI =

⋃

k∈Zd Λ + (k, 0).

Since we are dealing with discrete Gabor systems, we are only interested in situations when
the associated shift-invariant set is also discrete. In fact, we derive an exact characterization
of those sets Λ.

Proposition 4.7. Let Λ ⊂ R2d be discrete. Then the following conditions are equivalent.

(i) ΛSI is discrete.
(ii) There exists a discrete set T ⊂ Rd such that for each t ∈ T there exist st

1, . . . , s
t
nt

∈

[0, 1)d, nt ∈ N such that Λ ⊆
⋃

t∈T

(
⋃nt

i=1 st
i + Zd

)

× {t}.

Proof. In the following, abusing notation we write x mod 1, x ∈ Rd, for the modulus taken
in each component, hence x mod 1 ∈ [0, 1)d.

First we prove (i) ⇒ (ii). Let P2 denote the orthogonal projection of R2d = Rd×Rd onto the
second component. Towards a contradiction, assume that there exists t0 ∈ P2(Λ) such that
#{smod1 : (s, t0) ∈ Λ} = ∞. Then (

⋃

(s,t0)∈Λ s+ Zd)∩ [0, 1)d would contain infinitely many

elements, hence would not be discrete, in contradiction to (i). Thus #{s mod 1 : (s, t0) ∈
Λ} < ∞ for each t0 ∈ P2(Λ). Again towards a contradiction assume that P2(Λ) is not
discrete, i.e., that there exists a convergent sequence (tn)n∈N ⊂ P2(Λ) with limit t0 ∈ P2(Λ).
Let (sn)n∈N0 be such that (sn, tn) ∈ Λ for all n ∈ N0. Hence {(sn mod 1, tn) : n ∈ N0} ⊆ ΛSI .
But sn mod 1 ∈ [0, 1)d for all n ∈ N0, thus (sn)n∈N contains a convergent subsequence
(snk

)k∈N. We obtain that (snk
, tnk

)k∈N and its limit are contained in ΛSI , in contradiction to
(i). Collecting the above two properties of the set Λ yields (ii).

To prove the converse implication suppose that (ii) is satisfied. It is easy to see that
ΛSI ⊆

⋃

t∈T

(
⋃nt

i=1 st
i + Zd

)

× {t}. Thus ΛSI is discrete. �

The following corollary is an immediate consequence of the previous result.

Corollary 4.8. Let Λ = S × T ⊂ R2d be discrete. Then the following conditions are
equivalent.

(i) ΛSI is discrete.
(ii) There exist s1, . . . , sn ∈ [0, 1)d, n ∈ N such that S ⊆

⋃n

i=1 si + Zd.
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A large class of examples consists of arbitrary subsets Λ of lattices aZd × bZd, a ∈ Q+,
b > 0, in which case ΛSI is always discrete.

4.3. Density conditions. Extending a Gabor system to a weighted shift-invariant Gabor
system while preserving special properties of the system will be shown to impose special
conditions on the density of those systems.

Capturing the spirit of the relation between affine and quasi-affine systems and more
generally the oversampling theorems in wavelet theory we are led to the following definition
in the situation of Gabor systems.

Definition 4.9. Let Λ ⊂ R2d and w : ΛSI → R+ be such that there exists g ∈ L2(Rd) so that
both G(g, Λ) and G(g, ΛSI , w) are frames for L2(Rd) with a common lower frame bound A and
common upper frame bound B. Furthermore, suppose that, for each h ∈ L2(Rd), if G(h, Λ) is
a frame for L2(Rd) with frame bounds A and B, then G(h, ΛSI , w) is also a frame for L2(Rd)
with frame bounds A and B. Then we call (Λ, ΛSI, w, g) a shift-invariant extension pair with
respect to the frame bounds A and B. We call (Λ, ΛSI , w, g) a shift-invariant extension pair
with respect to the frame bound A, if A = B.

Interestingly, already the existence of the one function g yields a relation between the
densities of Λ and (ΛSI , w), the frame bounds, and the norm of g.

Proposition 4.10. Let Λ ⊂ R2d and w : ΛSI → R+ be such that there exists g ∈ L2(Rd) so
that both G(g, Λ) and G(g, ΛSI , w) are frames for L2(Rd) with a common lower frame bound
A and common upper frame bound B. Then

A ‖g‖−2
2 ≤ D−(Λ) ≤ D+(Λ) ≤ B ‖g‖−2

2

and

A ‖g‖−2
2 ≤ D−(ΛSI , w) ≤ D+(ΛSI , w) ≤ B ‖g‖−2

2 .

Proof. This follows immediately from Theorem 4.2. �

This leads to a necessary condition on the density of Λ and (ΛSI , w) for the existence of
a shift-invariant extension pair.

Theorem 4.11. Let g ∈ L2(Rd), Λ ⊂ R2d, and w : ΛSI → R+ be given. If (Λ, ΛSI , w, g) is
a shift-invariant extension pair with respect to the frame bounds A and B, then

A ‖g‖−2
2 ≤ D−(Λ) ≤ D+(Λ) ≤ B ‖g‖−2

2

and

A ‖g‖−2
2 ≤ D−(ΛSI , w) ≤ D+(ΛSI , w) ≤ B ‖g‖−2

2 .

Proof. Employing the definition of a shift-invariant extension pair and Proposition 4.10 yields
the claim. �

Now we consider the special situation in which we have a shift-invariant extension pair
with respect to the frame bound A.
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Corollary 4.12. Let g ∈ L2(Rd), Λ ⊂ R2d, and w : ΛSI → R+. If (Λ, ΛSI, w, g) is a shift-
invariant extension pair with respect to the frame bound A, then both Λ and (ΛSI , w) have
uniform density and

D(Λ) = D(ΛSI , w) = A ‖g‖−2
2 .

Proof. This is an immediate consequence of Theorem 4.11. �

Further, we discuss whether for an existing Gabor system, the shift-invariant system can
be equipped with weights so that the densities of both sets of indices coincide, a neces-
sary condition for the existence of shift-invariant extension pairs with respect to the frame
bound A.

Proposition 4.13. Let Λ ⊂ R2d with 0 < D−(Λ) ≤ D+(Λ) < ∞. Then there exists a weight
function w : ΛSI → R+ such that

D−(ΛSI , w) = D−(Λ) and D+(ΛSI , w) = D+(Λ).

Proof. By Lemma 2.2, there exists some minimal h > 0 with infx∈R2d #(Λ∩Qh(x)) > 0. For
each k = (k1, . . . , k2d) ∈ Z2d, let yk ∈ R2d be defined by yk = (k1h, . . . , k2dh). Then define
w : Λ → R+ by

w(a) =
#(Λ ∩ Qh(yk))

#(ΛSI ∩ Qh(yk))
for all a ∈ Λ ∩ Qh(yk), k ∈ Z2d.

Since w is constructed in such a way that #w(ΛSI ∩Qh(yk)) = #(Λ∩Qh(yk)) for all k ∈ Z2d,
for each x ∈ R2d and r > 1 there exists k ∈ Z2d with

#(Λ ∩ Q(r−2)h(yk)) ≤ #w(ΛSI ∩ Qrh(x)) ≤ #(Λ ∩ Q(r+2)h(yk))

and
#w(ΛSI ∩ Q(r−2)h(yk)) ≤ #(Λ ∩ Qrh(x)) ≤ #w(ΛSI ∩ Q(r+2)h(yk)).

Employing the definition of weighted density settles the claim. �

At last, we present a short example of a shift-invariant extension pair in the one-dimensio-
nal situation to enlighten the previous results.

Example 4.14. Consider the subset Λ = 2Z× 1
2
Z of R2, whose uniform density equals 1. The

associated shift-invariant set is easily seen to be ΛSI = Z× 1
2
Z. Employing the construction

contained in the proof of Proposition 4.13 yields the weight function w : ΛSI → R+ defined
by w ≡ 1

2
. Then D(Λ) = 1 = D(ΛSI, w).

Now let g ∈ L2(R) be such that G(g, Λ) is a Parseval frame for L2(R), e.g., g = χ[0,1).
Then also G(g, (2Z + 1) × 1

2
Z) is a Parseval frame for L2(R), since

∑

m,n∈Z

∣

∣

〈

f, ρ(2m + 1, 1
2
n)g
〉
∣

∣

2
=
∑

m,n∈Z

∣

∣

〈

ρ(−1, 0)f, ρ(2m, 1
2
n)g
〉
∣

∣

2
= ‖ρ(−1, 0)f‖2

2 = ‖f‖2
2

for all f ∈ L2(R). We observe that we can decompose ΛSI as ((2Z+1)× 1
2
Z)∪(2Z× 1

2
Z). Since

each function in the system G(g, ΛSI, w) is equipped with the weight 1√
2
, also G(g, ΛSI, w)

forms a Parseval frame for L2(R). Thus (Λ, ΛSI, w, χ[0,1)) is a shift-invariant extension pair
with respect to the frame bound 1.
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