
Chapter 1

Fusion Frames

Peter G. Casazza and Gitta Kutyniok

Abstract Novel technological advances significantly increased the demand
to model applications requiring distributed processing. Frames are however
too restrictive for such applications, wherefore it was necessary to go beyond
classical frame theory. Fusion frames, which can be regarded as frames of
subspaces, do satisfy exactly those needs. They analyze signals by projecting
them onto multidimensional subspaces, in contrast to frames which consider
only one-dimensional projections. This chapter shall serve as an introduction
to and a survey about this exciting area of research as well as a reference for
the state-of-the-art of this research field.
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1.1 Introduction

In the 21st century, scientists face massive amounts of data, which can typi-
cally not be handled anymore with a single processing system. A seemingly
unrelated problem arises in sensor networks when communication between
any pair of sensors is not possible due to, for instance, low communication
bandwidth. A yet different question is the design of erasure-resilient packet-
based encoding when data is broken into packets for separate transmission.
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All these problems can be regarded as belonging to the field of distributed
processing. However, they have an even more special structure in common,
since each one can be regarded as a special case of the following mathemat-
ical framework: Given data and a collection of subspaces, project the data
onto the subspaces, then process the data within each subspace, and finally
‘fuse’ the locally computed objects. The decomposition of the given data into
the subspaces coincides with – relating to the initial three problems – the
splitting into different processing systems, the local measurements of groups
of close sensors, and the generation of packets. The distributed fusion models
the reconstruction procedure, also enabling, for instance, an error analysis
of resilience against erasures. This is however only possible if the data is
decomposed in a redundant way, which forces the subspaces to be redundant.

Fusion frames provide a suitable mathematical framework to design and
analyze such applications under distributed processing requirements. Inter-
estingly, fusion frames are also a versatile tool for more theoretically oriented
problems in mathematics, and we will see various examples for this through-
out this chapter as well.

1.1.1 The Fusion Frame Framework

Let us now give a first half-formal introduction to fusion frames, utilizing
another motivation as a guideline. One goal in frame theory is to construct
large frames by fusing ‘smaller’ frames, and, in fact, this was the original
reasoning for introducing fusion frames by the two authors in [21]. We will
come back to the three signal processing applications in Subsection 1.1.3 and
show in more detail how they fit into this framework.

Locality of frames can be modeled as frame sequences, i.e., frames for
their closed linear span. Now assume we have a collection of frame sequences
(ϕij)

Ji

j=1 in HN with i = 1, . . . ,M , and set Wi := span{ϕij : j = 1, . . . , Ji}
for each i. The key questions are whether the collection (ϕij)

M,Ji

i=1,j=1 forms

a frame for HN and, if yes, which frame properties does it have. The first
question is easy to answer, since what is required is the spanning property
of the family (Wi)

M
i=1. The second question requires more thought. But it is

intuitively clear that – besides the knowledge of the frame bounds of the frame
sequences – it will depend solely on the structural properties of the family
of subspaces (Wi)

M
i=1. In fact, it can be proven that the crucial property are

the constants associated with the ℓ2-stability of the mapping

HN ∋ x 7→ (Pi(x))
M
i=1 ∈ R

NM , (1.1)

where Pi denotes the orthogonal projection onto the subspace Wi. A family
of subspaces (Wi)

M
i=1 satisfying such a stability condition is then called a

fusion frame.
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We would like to emphasize that (1.1) leads to the basic fusion frame def-
inition. It can, for instance, be modified by considering weighted projections
to allow flexibility in the significance of each subspace, hence of each locally
constructed frame (ϕij)

Ji

j=1.
It should also be stressed that in [21], the introduced notion was coined

‘frames of subspaces’ for reasons which become clear in the sequel. Later, to
avoid confusion with the term ‘frames for subspaces’ and to emphasize the
local fusing of information, it was baptized ‘fusion frames’ in [22].

1.1.2 Fusion Frames versus Frames

The main distinction between frames and fusion frames lies in the fact that
a frame (ϕi)

M
i=1 for HN provides the following measurements of a signal x ∈

HN :
x 7→ (〈x, ϕi〉)Mi=1 ∈ R

M .

A fusion frame (Wi)
M
i=1 for HN on the other hand analyzes the signal x by

x 7→ (Pi(x))
M
i=1 ∈ R

MN .

Thus the scalar measurements of a frame are substituted by vector measure-
ments, and consequently, the representation space of a frame is RM , whereas
those of a fusion frame is RMN . This latter space can sometimes be reduced,
and we refer to the next section for details.

A further natural question is whether the theory of fusion frames includes
the theory of frames, which is indeed the case. In fact, – and the next section
will provide more detailed information – a frame can be regarded as a collec-
tion of the one-dimensional subspaces its frame vectors generate. Taking the
norms of the frame vectors as the aforementioned weights, it can be shown
that this is a fusion frame with similar properties. Conversely, taking a fusion
frame, one can fix an orthonormal basis in each subspace and then consider
the union of these bases. This will form a frame, which can be regarded as
being endowed with a particular substructure.

These two viewpoints indicate already at this point that fusion frame the-
ory is much more difficult than frame theory. In fact, most results in this
chapter will be solely stated for the case of the weights being equal to 1, and
even in this situation many questions which are answered for frames remain
open in the general situation of fusion frames.
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1.1.3 Applications of Fusion Frames

The generality of the framework of fusion frames allows their application to
various problems both of practical as well as theoretical nature – which then
certainly require additional adaptations in the specific setting considered. We
first highlight the three signal processing applications, which were already
mentioned in the beginning.

• Distributed Sensing. Given a collection of small and inexpensive sensors
scattered over a large area, the measurement each sensor produces of an
incoming signal x ∈ HN can be modeled as 〈x, ϕi〉, ϕi ∈ HN being the
specific characteristics of the sensor. Since due to, for instance, limited
bandwidth and transmission power, sensors can only communicate locally,
the recovery of the signal x can first only be performed among groups
of sensors. Let (ϕij)

Ji

j=1 in HN with i = 1, . . . ,M be such a grouping.
Then, setting Wi := span{ϕij : j = 1, . . . , Ji} for each i, local frame
reconstruction leads to the collection of vectors (Pi(x))

M
i=1. This data is

then passed on by special transmitters to a central processing station for
joint processing. At this point, fusion frame theory kicks in and provides a
means for performing and analyzing the reconstruction of the signal x. The
modeling of sensor networks through fusion frames was considered in the
series of papers [23, 38]. A similar local-global signal processing principle
is applicable to modeling of human visual cortex as discussed in [44].

• Parallel Processing. If a frame is too large for efficient processing – from
a computational complexity or a numerical stability standpoint –, one
approach is to divide it into multiple small subsystems for simple and ide-
ally parallel processing. Fusion frames allow a stable splitting into smaller
frames and afterwards a stable recombining of the local outputs. Splitting
of a large system into smaller subsystems for parallel processing was first
considered in [3, 43].

• Packet Encoding. Transmission of data over a communication network, for
instance the internet, is often achieved by first encoding it into a number of
packets. By introducing redundancy in the encoding scheme, the commu-
nication scheme becomes resilient against corruption or even complete loss
of transmitted packets. Fusion frames provide a means to achieve and ana-
lyze redundant subspace representations, where each packet carries one of
the fusion frame projections. The use of fusion frames for packet encoding
is considered in [4].

Fusion frames also arise in more theoretical problems as the next two
examples show.

• Kadison-Singer Problem. The 1959 Kadison-Singer Problem [25] is one of
the most famous unsolved problems in analysis today. One of the many
equivalent formulations is the following question: Can a bounded frame be
partitioned such that the spans of the partitions as a fusion frame lead to
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a ‘good’ lower fusion frame bound? Therefore, advances in the design of
fusion frames will have direct impact in providing new angles for a renewed
attack on the Kadison-Singer Problem.

• Optimal Packings. Fusion frame theory also bears close connections with
Grassmannian packings. It was shown in [38], that the special class of
Parseval fusion frames consisting of equi-distance and equi-dimensional
subspaces are in fact optimal Grassmannian packings. Thus, novel meth-
ods for constructing such fusion frames simultaneously provide ways to
construct optimal packings.

1.1.4 Related Approaches

Several approaches related to fusion frames have appeared in the literature.
The concept of a frame-like collection of subspaces was first exploited in rela-
tion to domain decomposition techniques in papers by Bjørstad and Mandel
[3] and Oswald [43]. In 2003, Fornasier introduced in [33] what he coined
quasi-orthogonal decompositions. The framework of fusion frames was in fact
developed at the same time by the two authors in [21] and contains those
decompositions as a special case. It should also be mentioned that Sun in-
troduced so-called G-frames in the series of papers [45, 46], which extend the
definition of fusion frames by generalizing the utilized orthogonal projections
to arbitrary operators. The generality of this notion is however not suitable
for modeling distributed processing.

1.1.5 Outline

In Section 1.2, we introduce the basic notions and definitions of fusion frame
theory, discuss the relation to frame theory, and present a reconstruction
formula. Section 1.3 is concerned with the introduction and application of
the fusion frame potential as a highly useful method for analyzing fusion
frames. The construction of fusion frames is then the focus of Section 1.4. In
this section, we present the spectral tetris algorithm as a versatile means to
construct general fusion frames followed by a discussion on the construction
of equi-isoclinic fusion frames and the construction of fusion frames for filter
banks. Section 1.5 discusses the resilience of fusion frames against the impacts
of additive noise, erasures, and perturbations. The relation of fusion frames
with the novel paradigm of sparsity – optimally sparse fusion frames and
sparse recovery from fusion frame measurements – is the topic of Section
1.6. We finish this chapter with the novel direction of non-orthogonal fusion
frames presented in Section 1.7.
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1.2 Basics of Fusion Frames

We start by making the intuitive view of fusion frames presented in the
introduction mathematically precise. We then state a reconstruction formula
for reconstructing signals from fusion frame measurements, which will also
require the introduction of the fusion frame operator.

We should mention that fusion frames were initially introduced in the
general setting of a Hilbert space. We are restricting ourselves here to the
finite dimensional setting, which is of more interest for applications. It is
worth noting that the level of difficulty is by far not diminished by this
restriction.

1.2.1 What is a Fusion Frame?

Let us start by stating the mathematically precise definition of a fusion frame,
which we already motivated in the introduction.

Definition 1. Let (Wi)
M
i=1 be a family of subspaces in HN , and let (wi)

M
i=1 ⊆

R+ be a family of weights. Then ((Wi, wi))
M
i=1 is a fusion frame for HN , if

there exist constants 0 < A ≤ B < ∞ such that

A‖x‖22 ≤
M∑

i=1

w2
i ‖Pi(x)‖22 ≤ B‖x‖22 for all x ∈ HN ,

where Pi denotes the orthogonal projection onto Wi for each i. The constants
A and B are called the lower and upper fusion frame bound, respectively. The
family ((Wi, wi))

M
i=1 is referred to as a tight fusion frame, if A = B is possible.

In this case we also refer to the fusion frames as an A-tight fusion frame.
Moreover, it is called a Parseval fusion frame, if A and B can be chosen as
A = B = 1. Finally, if wi = 1 for all i, often the notation (Wi)

M
i=1 is simply

utilized.

To illustrate the notion of a fusion frame, we first present some illuminating
examples, which also show the delicateness of constructing fusion frames.

Example 1.(a) Let (ei)
3
i=1 be an ONB of R3, define subspaces W1 and W2

by W1 = span{e1, e2} and W2 = span{e2, e3} and let w1 and w2 be two
weights. Then ((Wi, wi))

2
i=1 is a fusion frame for R3 with optimal fusion

frame bounds min{w2
1 , w

2
2} and w2

1 + w2
2 . We omit the obvious proof, but

mention that this example shows that even changing the weights does not
always allow us to turn a fusion frame into a tight fusion frame.

(b) Let now (ϕj)
J
j=1 be a frame for HN with bounds A and B. A natural

question is whether {1, . . . , J} can be partitioned into subsets J1, . . . , JM
such that the family of subspaces Wi = span{ϕj : j ∈ Ji}, i = 1, . . . ,M ,
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forms a fusion frame with ‘good’ fusion frame bounds – in the sense of their
ratio being close to 1, since this ensures a low computational complexity
of reconstruction. Remembering the sensor network application, we also
seek to choose the partitioning such that (ϕj)j∈Ji

possesses ‘good’ frame
bounds. However, it was shown in [25] that the problem of dividing a frame
into a finite number of subsets each of which has good lower frame bounds
is equivalent to the still unsolved Kadison-Singer Problem, see Subsection
1.1.3. The next subsection will, however, present some computationally
possible scenarios for deriving a fusion frame by partitioning a frame into
subsets.

1.2.2 Fusion Frames versus Frames

One question when introducing a new notion is its relation to the previously
considered classical notion, in this case to frames. Our first result shows that
fusion frames can be regarded as a generalization of frames in the following
sense.

Lemma 1. Let (ϕi)
M
i=1 be a frame for HN with frame bounds A and B. Then

(span{ϕi}, ‖ϕi‖2)Mi=1 constitutes a fusion frame for HN with fusion frame
bounds A and B.

Proof. For all x ∈ HN , we have

M∑

i=1

‖ϕi‖22‖Pi(x)‖22 =

M∑

i=1

‖ϕi‖22‖〈x, ϕi

‖ϕi‖2
〉 ϕi

‖ϕi‖2
‖22 =

M∑

i=1

|〈x, ϕi〉|2.

Applying the definitions of frames and fusion frames finishes the proof. ⊓⊔

On the other hand, if we choose any spanning set inside each subspace
of a given fusion frame, the collection of these families of vectors forms a
frame for HN . In this sense, a fusion frame might also be considered as a
structured frame. Note though, that this viewpoint depends heavily on the
selection of the subspace spanning sets. The next theorem states this local-
global interaction in detail.

Theorem 1 ([21]). Let (Wi)
M
i=1 be a family of subspaces in HN , and let

(wi)
M
i=1 ⊆ R+ be a family of weights. Further, let (ϕij)

Ji

j=1 be a frame for Wi

with frame bounds Ai and Bi for each i, and set A := mini Ai and B :=
maxiBi. Then the following conditions are equivalent.

1. ((Wi, wi))
M
i=1 is a fusion frame for HN .

2. (wiϕij)
M,Ji

i=1,j=1 is a frame for HN .
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In particular, if ((Wi, wi))
M
i=1 is a fusion frame with fusion frame bounds C

and D, then (wiϕij)
M,Ji

i=1,j=1 is a frame with bounds AC and BD. On the other

hand, if (wiϕij)
M,Ji

i=1,j=1 is a frame with bounds C and D, then ((Wi, wi))
M
i=1

is a fusion frame with fusion frame bounds C
B and D

A .

Proof. To prove the theorem, it is sufficient to prove the in particular-part.
For this, first assume that ((Wi, wi))

M
i=1 is a fusion frame with fusion frame

bounds C and D. Then

M∑

i=1

w2
i

Ji∑

j=1

|〈x, ϕij〉|2 =

M∑

i=1

w2
i




Ji∑

j=1

|〈Pi(x), ϕij〉|2



≤
M∑

i=1

w2
iBi‖Pi(x)‖22 ≤ BD‖x‖22.

The lower frame bound AC can be proved similarly.
Secondly, we assume that (wiϕij)

M,Ji

i=1,j=1 is a frame with bounds C and D.
In this case, we obtain

M∑

i=1

w2
i ‖Pi(x)‖22 ≤ 1

A

M∑

i=1

w2
i




Ji∑

j=1

|〈Pi(x), ϕij〉|2


 ≤ D

A
‖x‖22.

As before, the lower fusion frame bound C
B can be shown using similar argu-

ments. This finishes the proof. ⊓⊔

The following is an immediate consequence.

Corollary 1. Let (Wi)
M
i=1 be a family of subspaces in HN , and let (wi)

M
i=1 ⊆

R+ be a family of weights. Then ((Wi, wi))
M
i=1 is a fusion frame for HN if

and only if the subspaces Wi span HN .

Since tight fusion frames play a particularly important role due to their
advantageous reconstruction properties (see Theorem 2), we state the spe-
cial case of the previous result for tight fusion frames explicitly. It follows
immediately from Theorem 1.

Corollary 2. Let (Wi)
M
i=1 be a family of subspaces in HN , and let (wi)

M
i=1 ⊆

R+ be a family of weights. Further, let (ϕij)
Ji

j=1 be an A-tight frame for Wi

for each i. Then the following conditions are equivalent.

1. ((Wi, wi))
M
i=1 is a C-tight fusion frame for HN .

2. (wiϕij)
M,Ji

i=1,j=1 is an AC-tight frame for HN .

This result has an interesting consequence. Since redundancy is the crucial
property of a fusion frame as well as of a frame, one might be interested in a
quantitative way to measure it. In the situation of frames, the rather crude
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measure of the number of frame vectors divided by the dimension – which
is the frame bound in case of a tight frame with normalized vectors – has
recently been replaced by a more appropriate measure, see [5]. In the situation
of fusion frames, this is still under investigation. However, as a first notion of
redundancy in the situation of a tight fusion frame, we can choose its fusion
frame bound as a measure. The following result computes its value.

Proposition 1. Let ((Wi, wi))
M
i=1 be an A-tight fusion frame for HN . Then

we have

A =

∑M
i=1 w

2
i dimWi

N
.

Proof. Let (eij)
dimWi

j=1 be an orthonormal basis for Wi for each 1 ≤ i ≤ M .

By Corollary 2, the sequence (wieij)
M,dimWi

i=1,j=1 is an A-tight frame. Thus, we
obtain

A =

∑M
i=1

∑dimWi

j=1 ‖wieij‖2
N

=

∑M
i=1 w

2
i dimWi

N
. ⊓⊔

1.2.3 The Fusion Frame Operator

As discussed before, the fusion frame measurements of a signal x ∈ HN

are its (weighted) orthogonal projections onto the given family of subspaces.
Consequently, given a fusion frame W = ((Wi, wi))

M
i=1 for HN , we define the

associated analysis operator TW by

TW : HN → R
MN , x 7→ (wiPi(x))

M
i=1.

To reduce the dimension of the representation space RMN , we can select
an orthonormal basis in each subspace Wi, which we combine to an N ×
dimWi-matrix Ui. Then the analysis operator can be modified to TW(x) =
(wiU

T
i (x))Mi=1. This approach was undertaken, for instance, in [38].

As is customary in frame theory, the synthesis operator is defined to be
the adjoint of the analysis operator. Hence in this situation, the synthesis
operator T ∗

W , has the form

T ∗
W : RMN → R

N , (yi)
M
i=1 7→

M∑

i=1

wiPi(yi).

This leads to the following definition of an associated fusion frame operator
SW :

SW = T ∗
WTW : HN → HN , x 7→

M∑

i=1

w2
i Pi(x).
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1.2.4 Reconstruction Formula

Having introduced a fusion frame operator associated with each fusion frame,
we expect it to lead to a reconstruction formula as in the frame theory case.
Indeed, a similar result is true as the following theorem shows.

Theorem 2 ([21]). Let W = ((Wi, wi))
M
i=1 be a fusion frame for HN with

fusion frame bounds A and B and associated fusion frame operator SW . Then
SW is a positive, self-adjoint, invertible operator on HN with AId ≤ SW ≤
B Id. Moreover, we have the reconstruction formula

x =
M∑

i=1

w2
i S

−1
W (Pi(x)) for all x ∈ HN .

Note however, that this reconstruction formula – in contrast to the anal-
ogous one for frames – does not automatically lead to a ’dual fusion frame.’
In fact, the appropriate definition of a dual fusion frame is still a topic of
research.

Theorem 2 immediately implies that a fusion frame is tight if and only
if SW = AId, and in this situation the reconstruction formula takes the
advantageous form

x = A−1
M∑

i=1

w2
i (Pi(x)) for all x ∈ HN .

This fact makes tight fusion frames particularly attractive for applications.
If practical constraints prevent the utilization or construction of an ap-

propriate tight fusion frame, inverting the fusion frame operator can be still
circumvented for reconstruction. Recalling the frame algorithm introduced
in [49], we can generalize it to an iterative algorithm for reconstruction of
signals from fusion frame measurements. The proof of the following result
follows the arguments of the frame analog very closely; therefore, we omit it.

Proposition 2 ([22]). Let ((Wi, wi))
M
i=1 be a fusion frame in HN with fusion

frame operator SW and fusion frame bounds A and B. Further, let x ∈ HN ,
and define the sequence (xn)n∈N0

by

xn =

{
0, n = 0,

xn−1 +
2

A+BSW(x − xn−1), n ≥ 1.

Then we have x = limn→∞ xn with the error estimate

‖x− xn‖ ≤
(
B −A

B +A

)n

‖x‖.
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This algorithm enables reconstruction of a signal x from its fusion frame
measurements (wiPi(x))

M
i=1, since SW(x) – necessary for the algorithm – only

requires the knowledge of those measurements and of the sequence of weights
(wi)

M
i=1.

1.3 Fusion Frame Potential

The frame potential, which was introduced in [2] (see also [49]), gives a quan-
titative estimate of the orthogonality of a system of vectors by measuring the
total potential energy stored in the system under a certain force which en-
courages orthogonality. It was proven in [16] that, given a complete set of
vectors, the minimizers of the associated frame potential are precisely the
tight frames. This fact made the frame potential attractive for both theoret-
ical results as well as for deriving large classes of tight frames. However, a
slight drawback is the lack of an associated algorithm to actually construct
such frames, wherefore these results are mostly used as existence results.

The question of whether a similar quantitative measure exists for fusion
frames was answered in [14] by the introduction of a fusion frame poten-
tial. These results were significantly generalized and extended in [42]. In this
section, we will present a selection of the most fundamental results of this
theory.

Let us start by stating the definition of the fusion frame potential. Re-
calling that in the case of a frame Φ = (ϕi)

M
i=1 its frame potential is defined

by

FP (Φ) =

M∑

i,j=1

|〈ϕi, ϕj〉|2,

it is not initially clear how this can be extended. The following definition
from [14] presents a suitable candidate. Note that this includes the classical
frame potential by Lemma 1.

Definition 2. Let W = ((Wi, wi))
M
i=1 be a fusion frame for HN with associ-

ated fusion frame operator SW . Then the associated fusion frame potential
of W is defined by

FFP (W) =

M∑

i,j=1

w2
iw

2
jTr[PiPj ] = Tr[S2

W ].

The following result is immediate.

Lemma 2. Let W = ((Wi, wi))
M
i=1 be a fusion frame for HN with associated

fusion frame operator SW , and let (λi)
N
i=1 be the eigenvalues of SW . Then
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FFP (W) =

N∑

i=1

λ2
i .

We next define the class of fusion frames over which we seek to minimize
the fusion frame potential.

Definition 3. Letting d = (di)
M
i=1 be a sequence of positive integers and

w = (wi)
M
i=1 be a sequence of positive weights, we define the set

BM,N(d) = {((Wi, vi))
M
i=1 : ((Wi, vi))

M
i=1 is a fusion frame with

dimWi = di for all i = 1, 2, . . . ,M}

and the two subsets

BM,N (d, w) = {((Wi, vi))
M
i=1 ∈ BM,N(d) : vi = wi for all i = 1, 2, . . . ,M},

B1
M,N(d) = {W = ((Wi, vi))

M
i=1 ∈ BM,N (d) : Tr[SW ] =

M∑

i=1

v2i di = 1.}

We first focus on the set B1
M,N (d), and start with a crucial property of the

fusion frame potential of elements therein. In the following result, by ‖ · ‖F
we denote the Frobenius norm.

Proposition 3 ([42]). Let W = ((Wi, wi))
M
i=1 ∈ B1

M,N(d), then

∥∥∥∥
1

N
Id− SW

∥∥∥∥
2

F

= FFP (W)− 1

N
.

Proof. Since Tr[SW ] = 1 by definition of B1
M,N (d), a direct computation

shows that

∥∥∥∥
1

N
Id− SW

∥∥∥∥
2

F

= Tr

[
1

N2
Id− 2

N
SW + S2

W

]
= Tr[S2

W ]− 1

N
.

The definition of FFP (W) finishes the proof. ⊓⊔

This result implies that minimizing the fusion frame potential over the
family of fusion frames of B1

M,N (d) is equivalent to minimizing the Frobenius
distance between SW and a multiple of the identity.

In this spirit the following result does not seem surprising, but it requires
a technical proof which we omit here.

Theorem 3 ([42]). Local minimizers of FFP over B1
M,N(d) are global min-

imizers, and they are tight fusion frames.

We caution the reader that this theorem does not necessarily imply the
existence of local minimizers, only that they are tight fusion frames if they
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exist. Lower bounds of FFP provide a means to show the existence of local
minimizers. The following result is a direct consequence of Proposition 3.

Corollary 3. Let W ∈ B1
M,N(d). Then we have FFP(W) ≥ 1

N . Moreover,

FFP (W) = 1
N if and only if W is a tight fusion frame for HN .

We now turn to analyzing the fusion frame potential defined onBM,N (d, v).
As a first step, we state a lower bound for FFP, which will also lead to a fun-
damental equality for tight fusion frames.

Proposition 4 ([42]). Let d = (di)
M
i=1 be a sequence of positive integers

and w = (wi)
M
i=1 be a decreasing sequence of positive weights such that∑M

i=1 w
2
i di = 1 and

∑M
i=1 di ≥ N , and let W = ((Wi, wi))

M
i=1 ∈ BM,N (d, w).

Further, let j0 ∈ {1, . . . ,M} be defined by

j0 = j0(N, d, v) = max
1≤j≤M




j :

(
N −

j∑

i=1

di

)
w2

j >

M∑

i=j+1

w2
i di




 ,

and let j0 = 0 if the set is empty. If

c :=

∑M
i=j0+1 w

2
i di

N −∑j0
i=1 di

< w2
j0 ,

then

FFP (W) ≥
j0∑

i=1

w4
i di +



N −
M∑

i=j0+1

di



 c2. (1.2)

Moreover, we have equality in (1.2) if and only if the following two conditions
are satisfied:

(1) PiPj = 0 for all 1 ≤ i 6= j ≤ j0,
(2) ((Wi, wi))

M
i=j0+1 is a tight fusion frame for span{Wi : 1 ≤ i ≤ j0}⊥.

The main result from [42] is highly technical. Its statement utilizes the
notion of admissible (M + 1)-tuples (J0, J1, . . . JM ) with

Jr = {1 ≤ j1 < j2 < · · · < jr ≤ N},

and an associated partition

λ(J) = (jr − r, . . . , j1 − 1),

where r ≤ N . Due to lack of space we are not able to go into more de-
tail. We merely mention that an admissible (M + 1)-tuple is defined as one
for which the Littlewood-Richardson coefficient of the associated partitions
λ(J0), . . . , λ(JM ) is positive [34]. This allows us to phrase the following result.
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Theorem 4 ([42]). Let d = (di)
M
i=1 be a sequence of positive integers satis-

fying
∑

i di ≥ N , let w = (wi)
M
i=1 be a sequence of positive weights, and set

c =
∑M

i=1 w
2
i di. Then the following conditions are equivalent.

(i) There exists a c
N -tight fusion frame in BM,N(d, w).

(ii) For every 1 ≤ r ≤ N − 1 and every admissible (M +1)-tuple (J0, . . . , JM ),

r · c
N

≤
M∑

i=1

w2
i ·#(Ji ∩ {1, 2, . . . , di}).

Finally, we mention that [42] also provides necessary and sufficient con-
ditions for the existence of uniform tight fusion frames by exploiting the
Horn-Klyachko inequalities. We refer to [42] for the statement and proof of
this deep result.

1.4 Construction of Fusion Frames

Different applications might have different desiderata which a fusion frame is
required to satisfy. In this chapter we present three approaches for construct-
ing fusion frames: firstly, a construction procedure based on a given sequence
of eigenvalues of the fusion frame operator; secondly, a construction which
focusses on the angles between subspaces; and thirdly a construction which
yields fusion frames with particular filter-bank-like properties.

1.4.1 Spectral Tetris Fusion Frame Constructions

Both from a theoretical standpoint and for applications, we often seek to
construct fusion frames with a prescribed sequence of eigenvalues of the fusion
frame operator. Examples are the analysis of streaming signals for which a
fusion frame needs to be designed with respect to eigenbases of inverse noise
covariance matrices with given associated eigenvalues, similar to water-filling
principles for precoder design in wireless communication or face recognition
in which significance-weighted bases of eigenfaces might be given.

Let us go back to frame theory for a moment to see how the develop-
ment in this theory has had its impact on fusion frame theory. Although
unit norm tight frames are the most useful frames in practice, until recently
very few techniques for constructing such frames existed. In fact, the main
methodology employed was to truncate harmonic frames, and a construc-
tive method for obtaining all equal norm tight frames was available only for
R2 [36]. For years, the field was relying on existence proofs given by frame
potentials and majorization techniques [24]. A recent significant advance in
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frame construction occurred with the introduction of spectral tetris methods
[17] (see [50]). In this paper, spectral tetris was used to both classify and
construct all tight fusion frames which exist for equal dimensional subspaces
and weights equal to one. Quickly afterwards, this was generalized to con-
structing fusion frames with prescribed fusion frame operators restricted to
the case where the eigenvalues are ≥ 2 [11]. It was further generalized in [15]
to construct fusion frames (Wi)

M
i=1 for HN with prescribed eigenvalues for

the fusion frame operator and with prescribed dimensions for the subspaces.
The results in [15] which include the case of eigenvalues smaller than two,
are achieved by first extending the spectral tetris algorithm and changing the
basic building blocks from adjusted 2× 2 unitary matrices to adjusted k× k
discrete Fourier transform matrices.

1.4.2 Constructing Tight Fusion Frames

We start with a result on the existence and construction of tight fusion frames
((Wi, wi))

M
i=1 for HN with M ≥ 2N for equal-dimensional subspaces.

The first result from [17] we present is a slightly technical result which
will allow us to immediately construct new tight fusion frames from given
ones. The associated procedures are given by the following definitions from
[11], which for later use we state for more general non-equal dimensional
subspaces.

Definition 4. Let W = ((Wi, wi))
M
i=1 be an A-tight fusion frame for HN .

(a) If dimWi < N for all i = 1 . . . ,M and
⋂M

i=1 Wi = {0}, then the spatial
complement of W is defined as the fusion frame

((W⊥
i , wi))

M
i=1.

(b) For i = 1, 2, . . . ,M , let (eij)
mi

j=1 be an orthonormal basis for Wi, hence

( wi√
A
eij)

M , mi

i=1,j=1 is a Parseval frame for HN . Set m =
∑M

i=1 mi, and let

P denote the orthogonal projection which maps an orthonormal basis
(e′ij)

M , mi

i=1,j=1 for a containing Hilbert space Hm onto the Parseval frame

( wi√
A
eij)

M,mi

i=1,j=1 given by Naimark’s Theorem (see [49]). Then the fusion

frame

(span{(Id− P )eij}mi

j=1,
√
A− w2

i )
M
i=1

is called the Naimark complement of W with respect to (eij)
M , mi

i=1,j=1.

We should mention that the Naimark complement of a fusion frame de-
pends on the particular choice of initial orthonormal bases for the subspaces.
If we do not need to make this dependence explicit, we also speak of a
Naimark complement of W .
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We next quickly check whether in the case of tight fusion frames – our
situation in this subsection – this indeed yields tight fusion frames.

Lemma 3. Let W = ((Wi, wi))
M
i=1 be a tight fusion frame for HN , not all

of whose subspaces equal HN . Then both the spatial complement and each
Naimark complement of W are tight fusion frames.

Proof. To show the claim for the spatial complement, let x ∈ HN , denote the
tight frame bound of W by A, and observe that

M∑

i=1

w2
i ‖(Id− Pi)(x)‖22 =

M∑

i=1

w2
i (‖x‖22 − ‖Pi(x)‖22) =

( M∑

i=1

w2
i −A

)
‖x‖22.

Since
∑M

i=1 ω
2
i −A = 0 if and only if dim Wi = N for all 1 ≤ i ≤ M , we have

that ((W⊥
i , wi))

M
i=1 is a tight fusion frame.

Turning to Naimark complements, since

〈Peij , P eiℓ〉 = −〈(Id− P )eij , (Id− P )eiℓ〉,

for j 6= ℓ, it follows that ((Id − P )eij)
mi

j=1 is an orthogonal set. This implies

that (span{(Id− P )eij}mi

j=1,
√
1− w2

i )
M
i=1 is a tight fusion frame. ⊓⊔

Armed with these definitions, we can now state and prove our first result
from [17].

Proposition 5 ([17]). Let N,M, and m be positive integers such that 1 <
m < N .

(i) There exist tight fusion frames ((Wi, wi))
M
i=1 for HN with dimWi = m for

all i = 1, . . . ,M if and only if tight fusion frames ((Vi, vi))
M
i=1 for HN with

dimVi = N −m for all i = 1, . . . ,M exist.
(ii) There exist tight fusion frames ((Wi, wi))

M
i=1 for HN with dimWi = m for

all i = 1, . . . ,M if and only if tight fusion frames ((Vi, vi))
M
i=1 for RMm−N

with dimVi = (M − 1)m−N for all i = 1, . . . ,M exist.

Proof. Part (i) follows directly by taking the spatial complement and then
using Lemma 3. Part (ii) follows from repeated spatial complement construc-
tions followed by applications of Naimark complements and again application
of Lemma 3. ⊓⊔

We now turn to the main theorem of this subsection (cf. [17]), which can be
used to answer the question whether for a given a triple (M,m,N) of positive
integers, a tight fusion frame (with weights equal to one) of M subspaces of
equal dimension m exists for HN . The result is not merely an existence result
but answers the question by explicitly constructing a fusion frame of the given
parameters in most cases where one exists. Therefore, besides our previous
construction of fusion frames from given ones through complement methods,
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we need a construction for fusion frames to begin with. Using Theorem 1,
one way to construct a tight fusion frame with the parameters (M,m,N) is

to construct a tight unit norm frame (ϕi,j)
M,m
i=1,j=1 of Mm elements for HN ,

such that (ϕi,j)
m
j=1 is an orthogonal sequence for all i = 1, . . . ,M . We can

then define the desired tight fusion frame (Wi)
M
i=1 by letting Wi be the span

of (ϕi,j)
m
j=1 for i = 1, . . . ,M .

The tool of choice to construct unit norm tight frames whose elements can
be partitioned into sets of orthogonal vectors is the spectral tetris construc-
tion (see [50]). In general, fusion frame constructions involving spectral tetris
work due to the fact that frames constructed via spectral tetris are sparse (cf.
also Section 1.6). The sparsity property ensures that the constructed frames
can be partitioned into sets of orthonormal vectors, the spans of which are
the desired fusion frames.

Theorem 5 ([17]). Let N,M, and m be positive integers such that m ≤ N .

(i) Suppose that m|N . Then there exist tight fusion frames (Wi)
M
i=1 for HN

with dimWi = m for all i = 1, . . . ,M if and only if M ≥ N
m .

(ii) Suppose that m 6 | N . Then the following is true.

(a) If there exists a tight fusion frame (Wi)
M
i=1 for HN with dimWi = m

for all i = 1, . . . ,M , then M ≥ ⌈N
m⌉+ 1.

(b) If M ≥ ⌈N
m⌉+2, then tight fusion frames (Wi)

M
i=1 for CN with dimWi =

m for all i = 1, . . . ,M do exist.

Proof (Sketch of proof). (i). Suppose that there exists a tight fusion frame
(Wi)

M
i=1 for HN with dimWi = m for all i = 1, . . . ,M . Then any collection

of spanning sets for its subspaces consists of at least Mm vectors which span
HN , thus M ≥ N

m .

Conversely, assume thatM ≥ N
m withK := N

m being an integer by assump-
tion. Let (ej)

K
j=1 be an orthonormal basis for HK . There exists a unit norm

tight frame (ϕi)
M
i=1 for HK (see [49]). Now consider the m sets of orthonormal

bases given by (ei+(k−1)m)Kk=1 for i = 1, . . . ,m, and project the tight frame el-
ements onto each of the generated spaces, leading tom unit norm tight frames
(ϕij)

M
i=1 for j = 0, . . . ,m− 1. Setting Wi = span{ϕij : j = 0, . . . ,m− 1}, we

obtain the required fusion frame.
(ii). If there exists a tight fusion frame (Wi)

M
i=1 for HN with dimWi = m

for all i = 1, . . . ,M , then M ≥ N
m . Since m does not divide N , it follows

that M > N
m . Hence, by Lemma 3, there exists a tight fusion frame (Vi)

M
i=1

for HMm−N with dimVi = m for all i = 1, . . . ,M . Thus, there exist m
orthonormal vectors in HMm−N implying that m ≤ Mm−N . Hence, M ≥
N
m + 1. The claim follows now from the fact that M is an integer.

(iii). This part of the proof uses the sparsity of frames generated by spec-
tral tetris. For the arguments we refer to [17], and just remark that, first since
spectral tetris can in general only be used to construct frames consisting of
at least twice as many vectors as the dimension of the space, spatial com-
plements have to be used. Second, the orthogonality relations of the frames
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constructed by spectral tetris then allow us to stack modulated copies of such
frames, resulting in complex Gabor fusion frames. ⊓⊔

Theorem 5 leaves one case unanswered. Does a tight fusion frame of M
subspaces of equal dimension m exist in CN in the case that m does not
divide N and M = ⌈N

m⌉+1? As it happens, the answer is sometimes yes and
sometimes no. Which it is can be decided by repeatedly using Theorem 5
in conjunction with Proposition 5 for at most m − 1 times and we again
refer to [17] for the details. Also note that this result answers a non-trivial
problem in operator theory, i.e., it classifies the triples (N,M,m) so that
an N -dimensional Hilbert space has M rank m projections which sum to a
multiple of the identity.

1.4.3 Spectral Tetris Constructions of General Fusion

Frames

We next discuss a general construction introduced in [15], encompassing dif-
ferent eigenvalues of the fusion frame operator as well as different dimensions
of the subspaces, therefore including [11] as a special case.

We start by introducing a so-called reference fusion frame for a given se-
quence of eigenvalues. This carefully constructed fusion frame – while having
prescribed eigenvalues for its fusion frame operator – will have the striking
property that the dimensions of its subspaces are in a certain sense ’maxi-
mal’, allowing for a given sequence of dimensions to decide whether an asso-
ciated fusion frame can be constructed using the generalized spectral tetris
algorithm STC presented in Figure 1.1 (cf. [11]). This algorithm is a straight-
forward generalization of the original spectral tetris algorithm from the case
of tight frames to the case of frames with prescribed spectrum for the frame
operator; i.e. now the rows of the synthesis matrix that is being constructed
square sum to the respective prescribed eigenvalues. We will say a tight fu-
sion frame is constructible via STC, if there is a frame constructed by STC,
whose vectors can be partitioned in such a way that the vectors in each set
of the partition span the respective subspaces of the fusion frame.

The construction of the reference fusion frame for a prescribed sequence of
eigenvalues is achieved by the following algorithm coined RFF (Figure 1.2).
We will denote the reference fusion frame constructed for the sequence (λj)

N
j=1

via RFF by RFF ((λj)
N
j=1). In RFF and the following results of this section

we restrict ourselves to the case of eigenvalues ≥ 2 and just want to mention
that this restriction is dropped in [15], where the general case is handled by
first extending the spectral tetris construction.

The main goal will now be to derive necessary and sufficient conditions for
the constructibility of a fusion frame with prescribed eigenvalues of the fusion
frame operator and prescribed dimensions of its subspaces via STC. This will
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STC: Spectral Tetris construction for prescribed eigenvalues

Parameters:

• Dimension: N .
• Number of frame vectors: M .
• Eigenvalues: (λj)Nj=1 ⊆ [2,∞) satisfying

∑

N
j=1

λj = M .

Algorithm:

1) Set k := 1.
2) For j = 1, . . . , N do
3) Repeat
4) If λj < 2 and λj 6= 1 then

5) ϕk :=
√

λj

2
· ej +

√

1 −
λj

2
· ej+1.

6) ϕk+1 :=
√

λj

2
· ej −

√

1−
λj

2
· ej+1.

7) k := k + 2.
8) λj := 0.
9) λj+1 := λj+1 − (2− λj).
10) else
11) ϕk := ej .
12) k := k + 1.
13) λj := λj − 1.
14) end;
15) until λj = 0.
16) end;

Output:

• Unit norm (ϕi)Mi=1 ⊂ HN with eigenvalues (λj)Nj=1 for its frame operator.

Fig. 1.1 The STC for constructing a frame with prescribed spectrum of its frame
operator.

require us to compare the dimensions of the subspaces of a reference fusion
frame constructed by RFF with the prescribed sequence of dimensions.

We first need to recall the notion of majorization. Given a sequence a =
(an)

N
n=1 ∈ HN , we will denote the sequence obtained by rearranging the

coordinates of a in decreasing order by a↓ ∈ HN . For (an)
N
n=1, (bn)

N
n=1 ∈ HN ,

the sequence (an)
N
n=1 majorizes (bn)

N
n=1, denoted by (an) � (bn), provided

that
∑m

n=1 a
↓
n ≥∑m

n=1 b
↓
n for all m = 1, . . . , N − 1 and

∑N
n=1 an =

∑N
n=1 bn.

This notion will be the key ingredient for deriving a characterization of the
constructability via spectral tetris of a fusion frame with prescribed eigenval-
ues and dimensions. We note that we will also use the notion of majorization
between sequences of different lengths by agreeing to add zero entries to the
shorter sequence in order to have sequences of the same length.

The proof of the following condition is constructive and we refer to [15]
for how to iteratively construct the desired fusion frame starting from the
reference fusion frame.
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RFF (Reference Fusion Frame)

Parameters:

• Dimension: N .
• Eigenvalues: (λj)Nj=1 ⊆ [2,∞).

Algorithm:

1) Run STC for (λj)Nj=1 and M :=
∑

N
j=1

λj to obtain frame (ϕi)Mi=1.

2) K :=maximal support size of the rows of the synthesis matrix of (ϕi)Mi=1.
3) Si := ∅ for i = 1, . . . ,K.
4) k := 0.
5) Repeat
6) k := k + 1.
7) j := min{1 ≤ r ≤ K : suppϕk ∩ suppϕs = ∅ for all ϕs ∈ Sr}.
8) Sj := Sj ∪ {ϕk}.
9) until k = M .

Output:

• Fusion frame (Vi)Ki=1, where Vi = spanSi for i = 1, . . . ,K.

Fig. 1.2 The RFF algorithm for constructing the reference fusion frame.

Theorem 6 ([15]). Let M,N be positive integers with M ≥ 2N , let (λj)
N
j=1⊆

[2,∞), and let (di)
D
i=1 be a sequence of positive integers such that

∑N
j=1 λj =∑D

i=1 di = M . Further, let (Vi)
K
i=1 = RFF ((λj)

N
j=1). If (dimVi) � (di), then

a fusion frame (Wi)
D
i=1 for HN such that dimWi = di for i = 1, . . . , D and

whose fusion frame operator has the eigenvalues (λj)
N
j=1 can be constructed

via STC.

In the special case of tight fusion frames the majorization condition is also
necessary for constructability via a partitioning into orthonormal sets of a
frame constructed via STC.

Theorem 7 ([15]). Let M,N be positive integers with M ≥ 2N , and let

(di)
D
i=1 be a sequence of positive integers such that

∑D
i=1 di = M . Further,

let (Vi)
K
i=1 = RFF ((λj)

N
j=1) with (λj)

N
j=1 = (MN , . . . , M

N ). Then the following
conditions are equivalent.

(i) A tight fusion frame (Wi)
M
i=1 for HN with dimWi = di for i = 1, . . . ,M ,

is constructible via STC.
(ii) (dimVi) � (di).
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1.4.4 Equi-Isoclinic Fusion Frames

Equal norm equi-angular Parseval frames are highly useful for applications,
in particular due to their optimal erasure resilience alongside an optimal
condition number of the synthesis matrix. Examples include reconstruction
without phase [1] and quantum state tomography [47].

The fusion frame analogue of this class of Parseval frames are fusion frames
whose subspaces have equal chordal distances, or – as the stricter requirement
– that the subspaces be equi-isoclinic [39]. The notion of chordal distance
was introduced by Conway, Hardin and Sloane in [27], whereas the notion
of equi-isoclinic subspaces was introduced by Lemmens and Seidel in [39],
the later being further studied by Hoggar [37] and others [30, 31, 32, 35].
Similarly as in frame theory, also this analog class of fusion frames – with
equal chordal distances as well as with equi-isoclinic subspaces – is optimally
resilient against noise and erasures. For more details, we refer to the discussion
in Subsection 1.5.2. At this point, to provide a first intuitive understanding,
let us just mention that this class of fusion frames distributes the incoming
energy most evenly to the fusion frame measurements.

As a prerequisite we first require the notion of principal angles.

Definition 5. Let W1 and W2 be subspaces of HN with m := dimW1 ≤
dimW2. Then the principal angles θ1, θ2, . . . , θm between W1 and W2 are
defined as follows:

Let

θ1 = min

{
arccos

( 〈x1, x2〉
‖x1‖2‖x2‖2

)
: xi ∈ Wi, i = 1, 2

}

be the first principle angle, and let x
(1)
i ∈ Wi, i = 1, 2 be chosen such that

cos θ1 =
〈x(1)

1 , x
(1)
2 〉

‖x(1)
1 ‖2‖x(1)

2 ‖2
.

Then, for any 1 ≤ j ≤ m, the principle angle θj is defined recursively by

θj =min

{
arccos

( 〈x1, x2〉
‖x1‖2‖x2‖2

)
: xi ∈ Wi, xi ⊥ x

(ℓ)
i ∀1 ≤ ℓ ≤ j − 1, i = 1, 2

}
,

and letting x
(j)
i ∈ Wi with xi ⊥ x

(ℓ)
i for all 1 ≤ ℓ ≤ j − 1, i = 1, 2 be chosen

such that

cos θj =
〈x(j)

1 , x
(j)
2 〉

‖x(j)
1 ‖2‖x(j)

2 ‖2
.

Armed with this notion, we can now introduce the notion of chordal dis-
tance and isoclinicness.
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Definition 6. Let W1 and W2 be subspaces of HN with m := dimW1 =
dimW2 and denote by Pi the orthogonal projection ontoWi, i = 1, 2. Further
let (θj)

m
j=1 denote the principal angles for this pair.

(a) The chordal distance dc(W1,W2) between W1 and W2 is given by

d2c(W1,W2) = m− Tr[P1P2] = m−
m∑

j=1

cos2 θj .

(b) The subspaces W1 and W2 are called isoclinic, if

θj1 = θj2 for all 1 ≤ j1, j2 ≤ m.

Multiple subspaces are called equi-isoclinic, if they are pairwise isoclinic.

Part (b) of Definition 6 is an equivalent formulation of the standard defi-
nition. The main result of this subsection will be a construction of an equi-
isoclinic fusion frame, meaning a fusion frame with equi-isoclinc subspaces.
One main ingredient is the method of a Naimark complement (cf. Definition
4). As a first step – also as an interesting result by its own – we analyze the
change of the principles angles under computing a Naimark complement. The
proof is a straightforward computation, and we refer to [18] for the details.

Theorem 8 ([18]). Let ((Wi, wi))
M
i=1 be a Parseval fusion frame for HN with

dimWi = m for all 1 ≤ i ≤ M , and let ((W ′
i ,
√
1− w2

i ))
M
i=1 be a Naimark

complement of it. For 1 ≤ i1 6= i2 ≤ M , we denote the principal angles for

the pair of subspaces Wi1 ,Wi2 by (θ
(i1i2)
j )mj=1. Then the principal angles for

the pair W ′
i1 ,W ′

i2 are



arccos



 wi1√
1− w2

i1

· wi2√
1− w2

i2

· cos(θ(i1i2)j )








M

j=1

.

Next, we utilize this result to provide a method to construct equi-isoclinic
fusion frames, which was developed in [7].

Theorem 9 ([7]). Let (eij)
M , N
i=1,j=1 be a union of M orthonormal bases for

HN . Then (span{eij : j = 1, . . . , N},
√
1/M)Mi=1 is a Parseval fusion frame

for HN , and we let (W ′
i,
√
(M − 1)/M)Mi=1 denote the Parseval fusion frame

for R(M−1)N derived as its Naimark complement with respect to (eij)
M , N
i=1,j=1.

Then the following hold.

(i) For all i ∈ {1, 2, . . . ,M}, we have

span{W ′
i′}i′ 6=i = R

(M−1)N .
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(ii) The principal angles for the pair W ′
i1
,W ′

i2
are given by

θ
(i1i2)
j = arccos

(
1

M − 1

)
.

Thus, (W ′
i,
√
(M − 1)/M)Mi=1 forms an equi-isoclinic Parseval fusion frame.

Proof. The fact that (span{eij : j = 1, . . . , N},
√
1/M)Mi=1 is a Parseval fu-

sion frame for HN is immediate. Let now P : RMN → HN denote the or-
thogonal projection given by Naimark’s theorem, so that eij =

√
1/M · Pe′ij

for some orthonormal basis (e′ij)
M , N
i=1,j=1 in RMN .

(i). Since, for a fixed i, the set (eij)
N
j=1 is linearly independent, [6, Cor.

2.6] implies that

W ′
i = span{(Id− P )ei′j′ : i

′ 6= i} for all i = 1, . . . ,M.

This proves (i).
(ii). For this, let i1 6= i2 ∈ {1, . . . ,M}. Note that the principles angles for

the pair Wi1 ,Wi2 are all equal to 0. Hence, by Theorem 8, principal angles
for the pair W ′

i1
,W ′

i2
are given by

arccos




1√
M√

1− ( 1√
M
)2

1√
M√

1− ( 1√
M
)2

cos 0


 = arccos

(
1

M − 1

)
.

Thus, (ii) is also proved. ⊓⊔

We now present a particularly interesting special case of this result,
namely, when the family (eij)

M , N
i=1,j=1 is chosen to be a family of mutually

unbiased bases. We first define this notion.

Definition 7. A family of orthonormal sequences {eij}Mi=1, j = 1, . . . , L, in
HN is called mutually unbiased, if there exists a constant c > 0 such that

|〈ei1j1 , ei2j2〉| = c for all j1 6= j2

If N = M , then necessarily c =
√
1/N , and we refer to {eij}M, L

i=1,j=1 as a
family of mutually unbiased bases.

Now choosing (eij)
M , N
i=1,j=1 to be a family of mutually unbiased bases leads

to the following special case of Theorem 9.

Corollary 4. Let (eij)
M , N
i=1,j=1 be a family of mutually unbiased bases for

HN . Then (span{eij : j = 1, . . . , N},
√
1/M) is a Parseval fusion frame

for HN , and we let (W ′
i,
√
(M − 1)/M)Mj=1 denote the Parseval fusion frame

for R(M−1)N derived as its Naimark complement with respect to (eij)
M , N
i=1,j=1.
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Then (W ′
i ,
√
(M − 1)/M)Mj=1 is an equi-isoclinic fusion frame, and, more-

over, the subspaces W ′
i are spanned by mutually unbiased sequences.

Since mutually unbiased bases are known to exist in all prime power di-
mensions pr [48], this result implies the existence of Parseval fusion frames
with M ≤ pr +1 equi-isoclinic subspaces of dimension pr, spanned by mutu-
ally unbiased basic sequences in R(M−1)pr

. If neither equi-distance nor equi-
isoclinic Parseval fusion frames are realizable, a weaker version are families
of subspaces with at most two different values, see [12].

Finally, we mention that a different class of equi-isoclinic fusion frames
was recently introduced in [7] by using multiple copies of orthonormal bases.

1.4.5 Fusion Frame Filter Banks

In [26], the first efficiently implementable construction of fusion frames was
derived. The main idea is to use specifically designed oversampled filter banks.
A filter is a linear operator which computes the inner products of an input
signal with all translates of a fixed function. In a filter bank, several filters are
applied to the input, and each of the resulting signals is then downsampled.
The problem in designing filter bank frames is to get them to satisfy the
large number of conditions needed on the frame for the typical application.
An important tool here is the polyphase matrix. The fundamental works on
filter bank frames [8, 28] characterize translation-invariant frames in ℓ2(Z)
in terms of polyphase matrices. In particular, filter bank frames are char-
acterized in [28] and [8] derives the optimal frame bounds of a filter bank
frame in terms of the singular values of its polyphase matrix. In the paper
[26], these characterizations are then subsequently utilized to construct filter
bank fusion frame versions of discrete wavelet and Gabor transforms.

1.5 Robustness of Fusion Frames

Applications naturally call for robustness, which could mean resilience against
noise and erasures or stability under perturbation. In this section we will give
an introduction to several types of robustness properties of fusion frames.

1.5.1 Noise

One main advantage of redundancy is its property to provide resilience
against noise and erasures. Theoretical guarantees for a given fusion frame
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are determined only in the situation of random signals, see [38]. We should
mention that we focus on non-weighted fusion frames in this subsection.

1.5.1.1 Stochastic Signal Model

Let (Wi)
M
i=1 be a fusion frame for RN with bounds A and B, and for i =

1, . . . ,M , let mi be the dimension of Wi and Ui be an N ×mi-matrix whose
columns form an orthonormal basis of Wi for i = 1, . . . ,M . Further, let
x ∈ RN be a zero-mean random vector with covariance matrix E[xxT ] =
Rxx = σ2

xId. The noisy fusion frame measurements can then be modeled as

zi = UT
i x+ ni, i = 1, . . . ,M,

where ni ∈ Rmi is an additive white noise vector with zero mean and co-
variance matrix E[nin

T
i ] = σ2

nId, i = 1, . . . ,M . It is assumed that the noise
vectors for different subspaces are mutually uncorrelated and that the signal
vector x and the noise vectors ni, i = 1, . . . , N , are uncorrelated.

Setting

z = (zT1 zT2 · · · zTM )T and U = (U1 U2 · · · UM ),

the composite covariance matrix between x and z can be written as

E

[(
x
z

)(
xT zT

)]
=

(
Rxx Rxz

Rzx Rzz

)
,

where
Rxz = E[xzT ] = RxxU

is the M×L (L =
∑M

i=1 mi) cross-covariance matrix between x and z, Rzx =
RT

xz, and
Rzz = E[zzT ] = UTRxxU + σ2

nIdL

is the L × L composite measurement covariance matrix. The linear MSE
minimizer for estimating x from z is the Wiener filter or the LMMSE filter
F = RxzR

−1
zz , which estimates x by x̂ = Fz. Then the associated error

covariance matrix Ree is given by

Ree = E[(x − x̂)(x − x̂)T ] =
(
R−1

xx +
1

σ2
n

M∑

i=1

Pi

)−1

,

which is derived using the Sherman-Morrison-Woodbury formula. The MSE
is obtained by taking the trace of Ree.

A result from [38] shows that as in the frame case, a fusion frame is opti-
mally resilient against noise if it is tight.
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Theorem 10 ([38]). Assuming the model previously introduced, the follow-
ing conditions are equivalent.

(i) The MSE is minimized.
(ii) The fusion frame is tight.

In this case, the MSE is given by

MSE =
Nσ2

nσ
2
x

σ2
n +

σ2
xL
N

.

Proof. Since Rxx = σ2
xId and denoting the frame bounds by A and B, we

obtain
N

1
σ2
x
+ B

σ2
n

≤ (MSE = Tr[Ree]) ≤
N

1
σ2
x
+ A

σ2
n

.

This implies that the lower bound will be achieved, provided that the fusion
frame is tight. The explicit value of the MSE follows from here. ⊓⊔

1.5.2 Erasures

Similar to resilience against noise, redundancy is also beneficial for resilience
against erasures. Again, we can distinguish between a deterministic and a
stochastic signal model. The first case was analyzed in [4], whereas the sec-
ond case was studied in [38]. As before, in this subsection we focus on non-
weighted fusion frames.

1.5.2.1 Deterministic Signal Model

Let W = (Wi)
M
i=1 be a fusion frame for HN with dimWi = m for all i =

1, . . . ,M . Further, let TW and SW be the associated analysis and fusion frame
operator, respectively.

The loss of a set of subspaces will be modeled deterministically in the
following way. Given K ⊆ {1, . . . ,M}, the associated operator modeling era-
sures is defined by

EK : RMN → R
MN , EK((xi)

M
i=1)j =

{
xj : j 6∈ K,
0 : j ∈ K.

The next ingredient of the model is the measure for the imposed error. In
[4], the worst case measure was chosen, which in the case of k lost subspaces
is defined by

ek(W) = max{‖Id− S−1
W T ∗

WEKTW‖ : K ⊂ {1, . . . ,M}, |K| = k}.



1 Fusion Frames 27

We first state the result from [4] for one subspace erasure.

Theorem 11 ([4]). Assuming the model previously introduced, the following
conditions are equivalent.

(i) The worst case error e1(W) is minimized.
(ii) The fusion frame W is a Parseval fusion frame.

Proof. Setting DK := Id−EK for some K ⊂ {1, . . . ,M} with K = {i0}, we
obtain

‖Id− S−1
W T ∗

WEKTW‖ = ‖S−1
W T ∗

WDKTW‖ = ‖S−1
W Pi0‖

Hence, the quantity

e1(W) = max{‖S−1
W Pi0‖ : i0 ∈ {1, . . . ,M}}

needs to be minimized. This is achieved if and only if SW = Id, which is
equivalent to W being a Parseval fusion frame. ⊓⊔

To analyze the situation of two subspace erasures, we now restrict ourselves
to the class of fusion frames, already shown to behave optimally under one
erasure and reduce the measure e2(W) accordingly. Then the following result
is true; we refer to [4] for its lengthy proof.

Theorem 12 ([4]). Assuming the model previously introduced, the following
conditions are equivalent.

(i) The worst case error e2(W) is minimized.
(ii) The fusion frame W is an equi-isoclinic fusion frame.

This shows the need to develop construction methodologies for equi-
isoclinic fusion frames, and we refer the reader to Subsection 1.4.4 for details.

1.5.2.2 Stochastic Signal Model

We assume the model already detailed in Subsection 1.5.1.1. By Theorem
10, tight fusion frames are maximally robust against noise. Hence, from now
on we restrict ourselves to tight fusion frames and study within this class
which fusion frames are optimally resilient with respect to one, two, and more
erasures. Also, we should mention that all erasures are considered equally
important.

Again, the MSE shall be determined when the LMMSE filter F , as defined
before, is applied to a measurement vector now with erasures. To model the
erasures, let K ⊂ {1, 2, . . . ,M} be the set of indices corresponding to the
erased subspaces. Then, the measurements take the form

z̃ = (Id− E)z,
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where E is an L×L block-diagonal erasure matrix whose ith diagonal block
is an mi ×mi zero matrix, if i /∈ K, or an mi ×mi identity matrix, if i ∈ K.

The estimate of x is now given by

x̃ = F z̃,

with associated error covariance matrix

R̃ee = E
[
(x− x̃)(x − x̃)T

]
= E

[
(x− F (Id− E)z)(x− F (Id− E)z)T

]
.

The MSE for this estimate can be written as

MSE = Tr[R̃ee] = MSE0 +MSE,

where MSE0 = Tr[Ree] and MSE is the extra MSE due to erasures given
by

MSE = α2Tr


σ2

x

(
∑

i∈S

Pi

)2

+ σ2
n

(
∑

i∈S

Pi

)
 ,

where α = σ2
x/(Aσ

2
x + σ2

n).
This leads to the following result from [38] for one subspace. We also refer

to this paper for its proof.

Theorem 13 ([38]). Assuming the model previously introduced and letting
(Wi)

M
i=1 be a tight fusion frame, the following conditions are equivalent.

(i) The MSE due to the erasure of one subspace is minimized.
(ii) All subspaces Wi have the same dimension, i.e. (Wi)

M
i=1 is an equi-

dimensional fusion frame.

Recalling the definition of chordal distance dc(i, j) from Section 1.4.4, we
can state the result for two and more erasures. As before, we now restrict
to the class of fusion frames, already shown to behave optimally under noise
and one erasure.

Theorem 14 ([38]). Assuming the model previously introduced and letting
(Wi)

M
i=1 be a tight equi-dimensional fusion frame, the following conditions are

equivalent.

(i) The MSE due to the erasure of two subspaces is minimized.
(ii) The chordal distance between each pair of subspaces is the same and max-

imal, i.e. (Wi)
M
i=1 is a maximal equi-distance fusion frame.

Finally, let (Wi)
M
i=1 be an equi-dimensional, maximally equi-distance tight

fusion frame. Then the MSE due to k subspace erasures, 3 ≤ k < N , is
constant.

As we already mentioned in the introduction, we will end this subsec-
tion with a brief remark on the relation of the previously discovered optimal
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family of fusion frames with Grassmannian packings. For this, we first state
the following problem, which is typically referred to as the classical packing
problem (see also [27]).

Classical Packing Problem: For givenm,M,N , find a set of m-dimensional
subspaces (Wi)

M
i=1 in HN such that mini6=j dc(i, j) is as large as possible. In

this case we call (Wi)
M
i=1 an optimal packing.

A lower bound is given by the so-called simplex bound

m(N −m)M

N(M − 1)
.

Theorem 15 ([27]). Each packing of m-dimensional subspaces (Wi)
M
i=1 in

HN satisfies

d2c(i, j) ≤
m(N −m)

N

M

M − 1
, i, j = 1, . . . ,M.

Interestingly, there is a close connection between tight fusion frames and
optimal packings given by the following theorem.

Theorem 16 ([38]). Let (Wi)
M
i=1 be a fusion frame of equi-dimensional sub-

spaces with pairwise equal chordal distances dc. Then, the fusion frame is
tight if and only if d2c equals the simplex bound.

This shows that equi-distance tight fusion frames are optimal Grassman-
nian packings.

1.5.3 Perturbations

Perturbations are another common disturbance with respect to which one
might seek resilience of a fusion frame. Several scenarios of perturbations
of the subspaces can be envisioned. In [22], the following canonical Paley-
Wiener-type definition was employed.

Definition 8. Let (Wi)
M
i=1 and (Vi)

M
i=1 be subspaces of HN with associated

orthogonal projections denoted by (Pi)
M
i=1 and (Qi)

M
i=1, respectively. Further,

let (wi)
M
i=1 be positive weights, 0 ≤ λ1, λ2 < 1, and ǫ > 0. If, for all x ∈ HN

and 1 ≤ i ≤ M , we have

‖(Pi −Qi)(x)‖ ≤ λ1‖Pi(x)‖ + λ2‖Qi(x)‖ + ǫ‖x‖,

then ((Vi, wi))
M
i=1 is called a (λ1, λ2, ǫ)-perturbation of ((Wi, wi))

M
i=1.

Employing this definition, we obtain the following result about robustness
of fusion frames under small perturbations of the associated subspaces. We
wish to mention that a perturbation result using a different definition of
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perturbation can be derived by restricting [46, Thm. 3.1] to fusion frames,
however without weights.

Proposition 6 ([22]). Let ((Wi, wi))
M
i=1 be a fusion frame for HN with fu-

sion frame bounds A and B. Further, let λ1 ∈ [0, 1) and ǫ > 0 be such that

(1− λ1)
√
A− ǫ

(
M∑

i=1

w2
i

)1/2

> 0.

Moreover, let ((Vi, wi))
M
i=1 be a (λ1, λ2, ǫ)-perturbation of ((Wi, wi))

M
i=1 for

some λ2 ∈ [0, 1). Then ((Vi, wi))
M
i=1 is a fusion frame with fusion frame

bounds



(1− λ1)

√
A− ǫ

(∑M
i=1 w

2
i

)1/2

1 + λ2




2

and




√
B(1 + λ1) + ǫ

(∑M
i=1 w

2
i

)1/2

1− λ2




2

.

For the proof, we refer to [22]. An even more delicate problem is the
perturbation of local frame vectors if we consider the full sensor network
problem. The difficulty in this case is the possibility of frame vectors leaving
the subspace and hence even changing the dimension of those. A collection
of results in this direction can also be found in [22].

1.6 Fusion Frames and Sparsity

In this section we present two different types of results concerning sparsity
properties of fusion frames. The first result concerns the construction of tight
fusion frames consisting of optimally sparse vectors for efficient processing
[20, 19], and the second analyzes the sparse recovery from underdetermined
fusion frame measurements [9]. We refer at this point also to [51] for the
theory of sparse recovery and Compressed Sensing.

1.6.1 Optimally Sparse Fusion Frames

Typically, data processing applications face low on-board computing power
and/or small bandwidth budget. When the signal dimension is large, the
decomposition of the signal into its fusion frame measurements requires a
large number of additions and multiplications, which may be infeasible for
on-board data processing. It would hence be a significant improvement, if the
vectors of each orthonormal basis for the subspaces would contain very few
non-zero entries, hence – phrasing it differently – be sparse in the standard
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unit vector basis, thereby ensuring low-complexity processing. In [19, 20], an
algorithmic construction of optimally sparse tight fusion frames with pre-
scribed fusion frame operators was indeed derived, which we will present and
discuss in this subsection.

1.6.1.1 Sparseness Measure

As already elaborated upon before, we aim for sparsity of orthonormal bases
for the subspaces with respect to the standard unit vector basis, which ensures
low-complexity processing. Since we are interested in the performance of the
whole fusion frame, the total number of non-zero entries seems to be a suitable
sparsity measure. This viewpoint can also be slightly generalized by assuming
that there exists a unitary transformation mapping the fusion frame into one
having this ‘sparsity’ property. Taking these considerations into account, we
are led to proclaim the following definition for a sparse fusion frame, which
then reduces to the notion of a sparse frame.

Definition 9. Let (Wi)
M
i=1 be a fusion frame for HN with dimWi = mi for

all i = 1, . . . ,M and let (ej)
N
j=1 be an orthonormal basis for HN . If for each

i ∈ {1, . . . ,M} there exists an orthonormal basis (ϕi,ℓ)
mi

ℓ=1 for Wi with the
property that for each ℓ = 1, . . . ,mi there is a subset Ji,ℓ ⊂ {1, . . . , N} such
that

ϕi,ℓ ∈ span{ej : j ∈ Ji,ℓ} and

M∑

i=1

mi∑

ℓ=1

|Ji,ℓ| = k,

we refer to (ϕi,ℓ)
M,mi

i=1,ℓ=1 as an associated k-sparse frame. The fusion frame

(Wi)
M
i=1 is called k-sparse with respect to (ej)

N
j=1, if it has an associated

k-sparse frame and if, for any associated j-sparse frame, we have k ≤ j.

1.6.1.2 Optimality and Maximally Achievable Sparsity

We now have the necessary machinery at hand to introduce a notion of an
optimally sparse fusion frame. Optimality will typically be considered within
a particular class of fusion frames, e.g., in the class of tight ones.

Definition 10. Let FF be a class of fusion frames forHN , let (Wi)
M
i=1 ∈ FF ,

and let (ej)
N
j=1 be an orthonormal basis for HN . Then (Wi)

M
i=1 is called

optimally sparse in FF with respect to (ej)
N
j=1, if (Wi)

M
i=1 is k1-sparse with

respect to (ej)
N
j=1 and there does not exist a fusion frame (Vi)

K
i=1 ∈ FF

which is k2-sparse with respect to (ej)
N
j=1 with k2 < k1.

Let N,M,m be positive integers. Then the class of tight fusion frames
(Wi)

M
i=1 in HN with dimWi = m for all i = 1, . . . ,M will be denoted by

FF(M,m,N).
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In the case Mm
N ≥ 2 and ⌊Mm

N ⌋ ≤ M−3 we know that FF(M,m,N) is not
empty and moreover, can construct a tight fusion frame in this class using the
algorithm STFF introduced in Figure 1.3 (see [11]). STFF can be used to con-
struct fusion frames of equal dimensional subspaces with certain prescribed
eigenvalues for the fusion frame operator. We want to use STFF to construct
tight fusion frames, i.e. we apply STFF for the constant sequence of eigen-
values λj =

Mm
N for all j = 1, . . . , N , and will refer to the constructed fusion

frame as STFF(M,m,N). The following result shows that STFF(M,m,N) is
optimally sparse in the class FF(M,m,N). It is a consequence of [19, Thm.
4.4], the analogous result for frames.

STFF (Spectral Tetris for Fusion Frames)

Parameters:

• Dimension: N .
• Number of subspaces: M .
• Dimension of subspaces: m.
• Eigenvalues: (λj)Nj=1 ⊆ [2,∞) satisfying

∑

N
j=1

λj = Mm and ⌊λj⌋ ≤ M − 3
for all j = 1, . . . , N .

Algorithm:

1) Set k := 1.
2) For j = 1, . . . , N do
3) Repeat
4) If λj < 2 and λj 6= 1 then

5) ϕk :=
√

λj

2
· ej +

√

1 −
λj

2
· ej+1.

6) ϕk+1 :=
√

λj

2
· ej −

√

1−
λj

2
· ej+1.

7) k := k + 2.
8) λj := 0.
9) λj+1 := λj+1 − (2− λj).
10) else
11) ϕk := ej .
12) k := k + 1.
13) λj := λj − 1.
14) end;
15) until λj = 0.
16) end;

Output:

• Fusion frame (Wi)Mi=1 with Wi := span{ϕi+kM : k = 0, . . . ,m− 1}.

Fig. 1.3 The STFF algorithm for constructing a fusion frame.

Theorem 17 ([20]). Let N,M, and m be positive integers such that Mm
N ≥ 2

and ⌊Mm
N ⌋ ≤ M−3. Then the tight fusion frame STFF(M,m,N) is optimally
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sparse in the class FF(M,m,N) with respect to the standard unit vector
basis.

In particular, this tight fusion frame is mM +2(N − gcd(Mm,N))-sparse
with respect to the standard unit vector basis.

1.6.2 Compressed Sensing and Fusion frames

One possible application of fusion frames is music segmentation, in which each
note is not characterized by a single frequency but by the subspace spanned by
the fundamental frequency of the instrument and its harmonics. Depending
on the type of instrument, certain harmonics might or might not be present
in the subspace. The overlapping subspaces from distinct instruments can
be appropriately modeled by fusion frames. A canonical question is whether
from receiving linear combinations of a collection of signals, each being in
one of the subspaces, these signals can be extracted; preferably from as few
linear combinations – the measurements – as possible.

This leads to the fundamental question of sparse recovery from fusion
frame measurements, which can also be interpreted as structured sparse mea-
surements. In this subsection, we will discuss the answer to this question given
in [9], in which sparse recovery results in terms of coherence and RIP-type
conditions as well as an average case analysis is provided. In this subsection,
due to lack of space, we only focus on the first two.

1.6.2.1 Sparse Recovery from Underdetermined Fusion Frame
Measurements

The just described scenario can be modeled in the following way. Let (Wi)
M
i=1

be a fusion frame for HN , and let

x0 = (x0
i )

M
i=1 ∈ H := {(xi)

M
i=1 : xi ∈ Wi for all i = 1, . . . ,M} ⊆ R

MN .

Now assume that we only observe n linear combinations of those vectors; i.e.,
there exist some scalars aji satisfying ‖(aji)nj=1‖2 = 1 for all i = 1, . . . ,M
such that we observe

y = (yj)
n
j=1 =

(
M∑

i=1

ajix
0
i

)n

j=1

.

We first notice that this equation can be rewritten as

y = AIx
0, where AI = (ajiIdN )1≤j≤n, 1≤i≤M ,
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i.e., AI is the matrix consisting of the blocks aijIdM .
We now aim to recover x0 from those measurements. Since typically only

a few subspaces will contain a signal, it is instructive to impose sparsity con-
ditions as follows; we encourage the reader to compare this with the classical
definition of sparsity in [51].

Definition 11. Let x ∈ H. Then x is called k-sparse, if

‖x‖0 :=

M∑

i=1

‖xi‖0 ≤ k.

The initial minimization problem to consider would hence be

x̂ = argminx∈H‖x‖0 subject to AIx = y.

¿From the theory of Compressed Sensing, we know that this minimization is
NP-hard. A means to circumvent this problem is to consider the associated
ℓ1 minimization problem. In this case, the suitable ℓ1 norm on H is a mixed
ℓ2,1 norm defined by

∥∥(xi)
M
i=1

∥∥
2,1

:=

M∑

i=1

‖xi‖2 for any (xi)
M
i=1 ∈ H.

This leads to the investigation of the following minimization problem,

x̂ = argminx∈H‖x‖2,1 subject to AIx = y.

Taking the special structure of x ∈ H into account, we can rewrite this
minimization problem as

x̂ = argminx∈H‖x‖2,1 subject to APx = y,

where
AP = (ajiPi)1≤i≤M, 1≤j≤n. (1.3)

This problem is still difficult to implement, since minimization runs over H.
To come to the final utilizable form, let mi = dimWi and Ui be an N ×mi-
matrix whose columns form an ONB of Wi. This leads to the following two
problems – one being equivalent to the previous ℓ0 minimization problem, the
other being equivalent to the just stated ℓ1 minimization problem – which
now merely use matrix-only notation:

(P0) ĉ = argminc‖c‖0 subject to Y = AU(c)

and
(P1) ĉ = argminc‖c‖2,1 subject to Y = AU(c),

in which A = (aij) ∈ Rn×M , j ∈ Rmj , and yi ∈ RN , and
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U(c) =




cT1 U
T
1

...

cTMUT
M


 ∈ R

M×N , Y =




yT1
...

yTn


 ∈ R

n×N .

1.6.2.2 Coherence Results

A typically exploited measure for the coherence of the measurement matrix
is its mutual coherence. In [9], the following notion adapted to fusion frame
measurements was introduced.

Definition 12. The fusion coherence of a matrix A ∈ R
n×M with normalized

columns (ai = a·,i)Mi=1 and a fusion frame (Wi)
M
i=1 for RN is given by

µf (A, (Wi)
M
i=1) = max

j 6=k
[|〈aj , ak〉| · ‖PjPk‖2] .

The reader should note that ‖PjPk‖2 = |λmax(PjPk)|1/2 equals the largest
absolute value of the cosines of the principle angles between Wj and Wk.

This new notion now enables us to phrase the first main result about
sparse recovery. Its proof follows some of the arguments of the proof of the
analogous ‘frame result’ in [29] with increased technical difficulty; therefore,
we refer the reader to the original paper [9].

Theorem 18 ([9]). Let A ∈ Rn×M have normalized columns (ai)
M
i=1, let

(Wi)
M
i=1 be a fusion frame in RN , and let Y ∈ Rn×N . If there exists a solution

c0 of the system Y = AU(c) satisfying

‖c0‖0 <
1

2
(1 + µf (A, (Wi)

M
i=1)

−1),

then this solution is the unique solution of (P0) as well as of (P1).

This result generalizes the classical sparse recovery result from [29] by
letting N = 1, since in this case Pi = 1 for all i = 1, . . . ,M .

1.6.2.3 RIP Results

The RIP property, which complements the mutual coherence conditions, was
also adapted to the fusion frame setting in [9] in the following way.

Definition 13. Let A ∈ Rn×M and (Wi)
M
i=1 be a fusion frame for HN . Then

the fusion restricted isometry constant δk is the smallest constant such that

(1 − δk)‖z‖22 ≤ ‖AP z‖22 ≤ (1 + δk)‖z‖22

for all z ∈ RNM of sparsity ‖z‖0 ≤ k, where AP is defined as in (1.3).
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The definition of the restricted isometry constant in [13] is a special case
of Definition 13 with N = 1 and dimWi = 1 for i = 1, . . . ,M . Again, we
refer to [9] for the proof of the following theorem.

Theorem 19 ([9]). Let (A, (Wi)
M
i=1) have the fusion frame restricted isom-

etry constant δ2k < 1/3. Then (P1) recovers all k-sparse c from Y = AU(c).

1.7 Non-Orthogonal Fusion Frames

Until recently, fusion frame theory has mainly focused on the construction of
fusion frames with specified properties. However, in practice, we might not
have the freedom to choose the ‘best fusion frame’, since it is often given
by the application. One example is the application to modeling of sensor
networks (cf. Subsection 1.1.3), in which each sensor spans a fixed subspace
W of HN generated by the spatial reversal and the translates of the sensor’s
impulse response function [40, 41].

Although in such applications selection or manipulation of the subspaces is
not possible, sometimes there is the freedom to choose the measuring proce-
dure, i.e., the operators mapping the signal onto each element from the family
of subspaces. Let us consider again the example of distributed sensing. At the
first stage, each sensor in an particular area measures the scalar 〈x, ϕi〉 of an
incoming signal x ∈ HN , where ϕi ∈ HN depend on the characteristics of the
respective sensor for all i ∈ I, say. Now, assume that W = span{ϕi : i ∈ I}.
Instead of combining the scalars 〈x, ϕi〉 to obtain the orthogonal projection of
x onto W , also P (x), where P is a non-orthogonal projection onto W , could
be computed. In such cases, one objective is sparsity of the fusion frame
operator, which ensures, despite the fact that tightness might not be achiev-
able, an efficient reconstruction algorithm. Particularly desirable would be if
the fusion frame operator is a multiple of the identity or at least a diagonal
operator.

Another problem is the limited availability of tight fusion frames (cf. [50]).
The effectiveness of fusion frame applications in distributed systems is heavily
dependent on the end fusion process. This in turn depends upon the efficiency
of the inversion of the fusion frame operator. Tight fusion frames take care
of this problem because the frame operator is a multiple of the identity and
hence its inverse operator is also a multiple of the identity. But tight fusion
frames do not exist in situations. The idea here is to use non-orthogonal
projections which will result in much larger classes of fusion frames with the
(non-orthogonal) fusion frame operator equal to a multiple of the identity.

To tackle these problems, the theory of non-orthogonal fusion frames was
recently introduced in [10]. The main idea is to replace the orthogonal pro-
jections in the definition of a fusion frame with general projections, i.e.,
with linear operators Q from HN onto a subspace W of HN which sat-
isfy Q = Q2. Recall that in this case, the adjoint Q∗ is presumably also
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a non-orthogonal projection onto N (Q)⊥ with N (Q) ⊕ W = HN , where
N (Q) = {x ∈ HN : Qx = 0}. This yields the following definition, which
generalizes the classical notion of a fusion frame.

Definition 14. Let (Wi)
M
i=1 be a family of subspaces inHN , and let (wi)

M
i=1 ⊆

R
+ be a family of weights. For each i = 1, 2, . . . ,M let Qi be a (orthogonal or

non-orthogonal) projection onto Wi. Then ((Qi, wi))
M
i=1 is a non-orthogonal

fusion frame for HN , if there exist constants 0 < A ≤ B < ∞ such that

A‖x‖22 ≤
M∑

i=1

w2
i ‖Qi(x)‖22 ≤ B‖x‖22 for all x ∈ HN .

The constants A and B are called the lower and upper fusion frame bound,
respectively.

Letting W = ((Qi, wi))
M
i=1 be a non-orthogonal fusion frame for HN , the

associated analysis operator TW is defined by

TW : HN → R
MN , x 7→ (wiQi(x))

M
i=1,

and the synthesis operator T ∗
W , has the form

T ∗
W : RMN → R

N , (yi)
M
i=1 7→

M∑

i=1

wiQ
∗
i (yi).

The non-orthogonal fusion frame operator SW is then given by

SW = T ∗
WTW : HN → HN , x 7→

M∑

i=1

w2
iQ

∗
iQi(x).

Similar to Theorem 2, we have the following result.

Theorem 20 ([10]). Let W = ((Qi, wi))
M
i=1 be a non-orthogonal fusion

frame for HN with fusion frame bounds A and B and associated non-
orthogonal fusion frame operator SW . Then SW is a positive, self-adjoint,
invertible operator on HN with AId ≤ SW ≤ B Id. Moreover, we have the
reconstruction formula

x =

M∑

i=1

w2
i S

−1
W (Q∗

iQi(x)) for all x ∈ HN .

We now focus on the second problem, when we have the freedom to choose
the subspaces as well as the projections. Surprisingly, this additional freedom
enables the construction of tight (non-orthogonal) fusion frames in almost all
situations as the next result shows.
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Theorem 21 ([10]). Let mi ≤ N
2 for all i = 1, 2, . . . ,M satisfy

∑M
i=1 mi ≥

N . Then there exists a tight non-orthogonal fusion frame ((Qi, wi))
M
i=1 for

R
N such that rank(Qi) = mi for all i = 1, ...,M .

This result shows that if the dimensions of subspaces are less than or equal
to half the dimension of the ambient space, there always exists a tight non-
orthogonal fusion frame. The proof in fact shows that the weights can even
be chosen to be equal to 1. Thus, non-orthogonality allows a much larger
class of tight fusion frames.

To prove this result, we first require a particular classification of positive,
self-adjoint operators by projections. In order to build up some intuition, let
T : RN → RN be a positive, self adjoint operator. The goal is to classify the
set

Ω(T ) = {Q : Q2 = Q, Q∗Q = T }.
We first observe that, by the spectral theorem, T can be written as

T =

M∑

i=1

λiPi,

where the λi is the ith eigenvalue of T and Pi is the orthogonal projection
onto the space generated by the ith eigenvector of T . Hence Q ∈ Ω(T ) if
and only if the eigenvalues and eigenvectors of Q∗Q coincide with those of
T . Noting that Q ∈ Ω(T ) implies ker(Q) = im(T )⊥ and recalling that a
projection is uniquely determined by its kernel and its image it suffices to
consider the set

Ω̃(T ) = {im(Q) : Q ∈ Ω(T )}.
Moreover, observe that since the only projection of rank N is the identity,
we may assume rank(T ) < N .

The next result states the classification of Ω̃(T ) (and hence Ω(T )) which
we require for the proof of Theorem 21. Although the proof is fairly elemen-
tary we refer the reader to the complete argument in [10].

Theorem 22. Let T : Rn → Rn be a positive, self-adjoint operator of rank
k ≤ N

2 . Let (λj)
k
j=1 be the nonzero eigenvalues of T and suppose λj ≥ 1 for

j = 1, ..., k and suppose (ej)
k
j=1 is an orthonormal basis of im(T ) consisting

of eigenvectors of T associated to the eigenvalues (λj)
k
j=1. Then

Ω̃(T ) =




span

{
1√
λj

ej +

√
λj − 1

λj
ej+k

}k

j=1

: (ej)
2k
j=1 is orthonormal




 .

Let T : RN → RN be a positive, self-adjoint operator. Applying Theo-
rem 22 to 1

λk
T , where λk is the smallest non-zero eigenvalue of T and setting

v =
√
λk, yields the following corollary.
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Corollary 5. Let T : RN → RN be a positive, self-adjoint operator of rank
≤ N

2 . Then there exists a projection Q and a weight v so that T = v2Q∗Q.

Having these prerequisites, we can now prove Theorem 21.

Proof (Proof of Theorem 21). Let (ej)
N
j=1 be an orthonormal basis of RN ,

and let (Wi)
M
i=1 be a family of subspaces of HN such that

(a) Wi = span{ej}j∈Ji
with |Ji| = mi for each i = 1, ...,M .

(b) W1 + . . .+WM = HN .

Also, let Pi denote the orthogonal projection onto Wi, and set S =
∑M

i=1 Pi.
Notice that

Id = S−1S =

M∑

i=1

S−1Pi.

Since each projection Pi is diagonal with respect to (ej)
N
j=1, the operator

S−1 commutes with Pi for each i = 1, . . . ,M . Hence, for all i = 1, ...,M ,
S−1Pi is positive and self-adjoint. Now, letting γ denote the smallest nonzero
eigenvalue of all S−1Pi, i = 1, . . . ,M , the operator 1

γS
−1Pi satisfies the

hypotheses of Theorem 22. Thus, there exists a projection Qi so that

Q∗
iQi =

1

γ
S−1Pi,

leading to
M∑

i=1

Q∗
iQi =

1

γ
Id.

The theorem is proved. ⊓⊔

If we are willing to extend the framework even further and allow two pro-
jections onto each subspace, it can be shown that Parseval non-orthogonal
fusion frames can be constructed for any sequence of dimensions of the sub-
spaces [10].
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